syll m
ksyltex Ver $2.62 (2014 \hbox{-} 02 \hbox{-} 23)$ by Yas

2013 年度 工学部メディカルシステム工学科 授業科目一覧表

<u>2013 年及 エ</u> 授業コード	字部メティカルシステム上字科 授業権 授業科目名	単位数	開講時限等	担当教員	頁
T1L001001	メディカル工学セミナー	2.0	1年前期木曜2限	中口 俊哉他	メデ 3
T1L002001	医療現場体験	2.0	1 年通期集中 中口 俊哉 _他		メデ 4
T1L101101	ディジタル回路	2.0	3年前期月曜2限	大沼 一彦	メデ 4
T1L102001	情報数学 (メディカル)	2.0	3年前期火曜2限	山本 悦治	メデ 5
T1L103001	回路理論 I (メディカル)	4.0	3年前期水曜 5,6 限	岩坂 正和	メデ 6
T1L104001	生体生理工学 I	2.0	1年前期月曜4限	五十嵐 辰男	メデ 8
T1L105001	データ構造とアルゴリズム	2.0	2年後期水曜3限	菅 幹生	メデ 8
T1L106001	電子回路	4.0	3 年後期月曜 1,2 限	中口 俊哉	メデ 9
T1L107001	システム制御理論	4.0	3年後期月曜3限 3年後期木曜3限	兪 文偉	メデ 11
T1L108001	専門英語 I	2.0	3年前期火曜3限	(太田 真智子)	メデ 12
T1L109001	生体力学論	2.0	3年前期集中	(太田 裕治)	メデ 13
T1L111101	デザイン論 (メディカル)	2.0	3年後期水曜4限	久保 光徳	メデ 14
T1L112001	生体生理工学 II	2.0	1年後期火曜6限	川平 洋	メデ 14
T1L114001	コンピュータグラフィクス	2.0	3年前期水曜3限	大沼 一彦	メデ 15
T1L115001	数値計算	2.0	3年前期火曜2限	高橋 応明	メデ 16
T1L116001	回路理論 II	2.0	2年後期金曜1限	(上原 正啓)	メデ 17
T1L117101	感覚情報処理	2.0	3年後期火曜4限	鈴木 昌彦	メデ 18
T1L118001	信号処理論	2.0	3年前期木曜2限	山口 匡	メデ 19
T1L119101	認知情報処理論 (旧名称「視覚情報 処理」)	2.0	3年前期水曜4限	矢口 博久	メデ 20
T1L122101	空間設計論 (旧名称「医療空間設計論」)	2.0	3年前期火曜1限	中山 茂樹	メデ 20
T1L123001	医用統計学	2.0	3年後期月曜3限	林 秀樹	メデ 21
T1L124001	医用画像処理	2.0	3年後期金曜2限	羽石 秀昭	メデ 22
T1L125001	医用情報ネットワーク	2.0	3年前期火曜4限	塩田 茂雄	メデ 23
T1L129001	医用機械システム設計	2.0	3年後期木曜4限	(小松 研一)	メデ 24
T1L130001	専門英語 II	2.0	3年後期火曜3限	(太田 真智子)	メデ 25
T1L131001	医用支援機器	2.0	4年前期月曜4限	中村 亮一	メデ 26
T1L132001	生体機能材料	2.0	4年前期金曜2限	大須賀 敏明	メデ 27
T1L133101	応用電磁工学 (旧名称「医用電磁工学」)	2.0	3年前期月曜5限	伊藤 公一	メデ 27
T1L134001	診断計測工学	2.0	4年前期水曜3限	岩坂 正和	メデ 28
T1L135001	メディカルシステム実験 I	3.0	3 年前期金曜 3,4,5 限	中口 俊哉他	メデ 29
T1L136001	メディカルシステム実験 II	3.0	3 年後期金曜 3,4,5 限	中口 俊哉	メデ 30
T1L137001	卒業研究	8.0	4年通期集中	各教員	メデ 30
T1L138001	臨床医学概論	2.0	1年後期木曜5限	五十嵐 辰男	メデ 31
T1L139001	医用機器産業概論	2.0	3年後期水曜5限	伊藤 公一	メデ 32
T1L141001	医学研究概論	2.0	4年前期金曜4限	五十嵐 辰男	メデ 32
T1L142001	ロボット工学(メディカル)	2.0	3 年前期金曜 4,5 限隔週 1,3	並木 明夫	メデ 33
T1L143001	パターン認識(メディカル) (2013 年度 開講なし)	2.0	3年前期金曜2限	津村 徳道	メデ 34

2013 年度 工学部メディカルシステム工学科 シラバス

授業コード	授業科目名	単位数	開講時限等	担当教員	頁
T1L146001	メディカル理数特別セミナー IV	2.0	4年通期集中	各教員	メデ 35
T1L147001	計測工学	2.0	3年後期水曜3限	山本 悦治	メデ 35
T1L148001	通信工学概論	2.0	3,4 年前期月曜 3 限	高橋 応明	メデ 36
T1L149001	電子デバイス工学 (旧名称「医用電子回路」)	2.0	3年後期月曜4限	(和崎 浩幸)	メデ 37
T1L151001	プログラミング基礎	2.0	2年前期火曜4限	菅 幹生	メデ 38
T1L152001	プログラミング特講 I	2.0	2年前期火曜5限	菅 幹生	メデ 39
T1L153001	回路理論 I (メディカル)	2.0	2年前期水曜5限	岩坂 正和	メデ 40
T1L154001	運動学および力学	2.0	2年前期水曜2限	大須賀 敏明	メデ 41
T1L155001	工業数学	2.0	2年後期金曜2限	山口匡	メデ 42
T1L156001	電子回路 I	2.0	2年後期月曜2限	中口 俊哉	メデ 43
T1L157001	材料・設計・加工学	2.0	2年後期木曜2限	中村 亮一他	メデ 44
T1L158001	医用材料学	2.0	2年前期月曜2限	山田 真澄	メデ 44
T1L159001	プログラミング設計	2.0	2年後期木曜4限	中口 俊哉	メデ 45
T1L160001	プログラミング特講 II	2.0	2年後期水曜2限	大沼 一彦	メデ 46
T1Y016001	造形演習	2.0	1年前期火曜5限	植田 憲	メデ 47
T1Y016002	造形演習	2.0	1年前期火曜5限	田内 隆利	メデ 48
T1Y016003	造形演習	2.0	1年前期火曜5限	玉垣 庸一他	メデ 48
T1Y016004	造形演習	2.0	1年前期火曜5限	鈴木 弘樹他	メデ 49
T1Y016005	造形演習	2.0	1年前期火曜5限	UEDA EDILSON SHINDI	メデ 49
T1Z051001	工学倫理	2.0	3年後期月曜5限	荒井 幸代	メデ 50
T1Z052001	知的財産権セミナー	2.0	3年前期集中 前期金曜 4,5 限	(朝倉 悟)	メデ 51
T1Z053001	情報技術と社会	2.0	後期水曜2限	全へい東他	メデ 52
T1Z054001	工業技術概論	2.0	前期月曜 5 限	魯云	メデ 53
T1Z055001	居住のデザインと生活技術	2.0	後期金曜4限	魯云	メデ 54

T1L001001

授業科目名: メディカル工学セミナー

科目英訳名: Biomedical Engineering Seminar

担当教員 : 中口 俊哉、大沼 一彦

単位数 : 2.0 単位 開講時限等: 1 年前期木曜 2 限 授業コード: T1L001001 講義室 : 工 17 号棟 111 教室

科目区分

2013 年入学生: 専門基礎必修 E10 (**T1K**4:メディカルシステム工学科 (先進科学) , **T1L**:メディカルシステム工学科)

[授業の方法] 演習・実験

[受入人数] 45

[受講対象] 工学部メディカルシステム工学科の学生のみを対象とする。

[授業概要] メディカルシステム工学分野の最先端の研究について学びます。講師は、メディカルシステム工学科の各教育研究分野の教員から、1研究室あたり40分程度説明がなされます。次に、フロンティアメディカル工学研究開発センターの教員から、特に本学医学部との共同研究を含めた説明がなされます。 以上のような医工学研究の最先端に対する意気込みを感じつつ、BIOPACを用いた心電図と筋電図の実習とプレゼンテーションのスキルを身につけます。

[目的・目標] 先ず、メディカルシステム工学の最先端の話題を聞き、自分たちの将来の方向性を探る。ついで BIOPAC を用いた心電図と筋電図の実習により生体計測の基礎を学ぶとともに、卒業研究発表や今後の学会発表 等に向けたプレゼンテーションスキルについて学ぶ。

[授業計画・授業内容]

- 1. メディカル工学セミナーのガイダンスと講義内容の説明、及びメディカルシステム工学科教員による研究紹介(山本,菅)
- 2. メディカルシステム工学科教員による研究紹介(兪,中村)
- 3. メディカルシステム工学科教員による研究紹介(五十嵐,川村)
- 4. メディカルシステム工学科とフロンティアメディカル工学研究開発センター(CFME)教員による研究紹介 (伊藤,齊藤)
- 5. メディカルシステム工学科とフロンティアメディカル工学研究開発センター (CFME) 教員による研究紹介 (大須賀 , 岩坂)
- 6. メディカルシステム工学科とフロンティアメディカル工学研究開発センター(CFME)教員による研究紹介(鈴木,中口)
- 7. フロンティアメディカル工学研究開発センター (CFME) 教員による研究紹介(高橋)
- 8. フロンティアメディカル工学研究開発センター (CFME) 教員による研究紹介 (羽石 , 山口)
- 9. フロンティアメディカル工学研究開発センター (CFME) 教員による研究紹介(林,川平)
- 10. BIOPAC 実習とプレゼンテーションに関するガイダンス
- 11. BIOPAC 実習(心電図), 5 分間プレゼンテーション・評価
- 12. BIOPAC 実習 (筋電図) , 5 分間プレゼンテーション・評価
- 13. BIOPAC 実習 (心電図), 5 分間プレゼンテーション・評価
- 14. BIOPAC 実習 (筋電図), 5 分間プレゼンテーション・評価
- 15. 発表優秀者によるプレゼンテーション,レポート作成、提出

[キーワード] 高校物理、実習、安全教育、BIOPAC、プレゼンテーション

[教科書・参考書] 高校物理 IB 及び II の教科書

[評価方法・基準] 講義および実習の取り組み方、製作物、レポート等を総合的に評価

[履修要件] 特になし

T1L00200

授業科目名: 医療現場体験

科目英訳名: Meet the Professionals in Clinical Practice and Basical Research

担当教員 : 中口 俊哉、大沼 一彦

単位数 : 2.0 単位 開講時限等: 1 年通期集中

授業コード: T1L002001 講義室:

科目区分

2013 年入学生: 専門基礎選択必修 E20 (T1K4:メディカルシステム工学科 (先進科学) , T1L:メディカルシステム工学科)

[授業の方法] 講義・実習

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[目的・目標] 医療現場で医療倫理や医療従事者,患者との接し方の習得,メディカルシステムがいかに活用されているかを身をもって体験することが本集中講義の目的である.

[授業計画・授業内容] 模擬患者によるコミュニケーション実習,生命倫理,解剖実習見学,千葉大学医学部附属病院診療科見学,日立メディコ研究施設体験見学

- 1. 模擬患者によるコミュニケーション実習,生命倫理[実施日時:?月??日],工学部17号棟???号室本講義を受講しないと解剖実習見学はできません.遅刻厳禁.
- 2. 千葉大学医学部附属病院診療科見学 [実施日時:?月??日] { 白衣を持参すること・見苦しくない服装(Gパン, Tシャツ, サンダル, スニーカー等は不可)で見学を行うこと・インフルエンザ流行につき, 各人の健康チェックを行い, 当日熱のある学生は見学を見合わせること・見学に際して, 各自マスクを着用すること。} スケジュール(1) 12:30 医学部第 2 講義室(医学部正面玄関からまっすぐ進んで右側)に集合し点呼, 白衣に着替え, オリエンテーション・(2) 12:50 外来棟 3 階に上がり, 荷物を置く・(3) 12:55 各グループごと見学に出発・(4) 16:40 見学終了後, 荷物置き場で白衣から普段着に着替え, 荷物を受け取る・(5) 廊下で点呼・玄関前に移動して解散・
- 3. 日立メディコ研究施設体験見学 [実施日時:?月??日]「見苦しくない服装(Gパン,Tシャツ,サンダル,スニーカー等は不可)で見学すること」スケジュール(1) 13:35 柏の葉キャンパス駅(つくばエキスプレス)(バスで出迎えいただけるので絶対に遅刻しないこと。)(2) 13:45 日立メディコ着(約10分)(3) 13:50-13:55 挨拶(DVDによる会社説明)(4) 14:00-14:30 工場見学(3 班に分かれて見学)(5) 14:30-16:30 製品説明(2 班に分かれて,展示会場にて以下の製品をご説明いただく。)?超音波装置,?X線装置,?CT装置,?MRI装置,?光トポ装置(6) 16:30-16:50 質疑応答終了後は,バスで柏の葉キャンパス駅までお送りいただく。
- 4. 夏季休業中に,医療工学あるいは医用工学に関する単行本を一冊読み,その内容を要約し,感想をまとめてレポートを提出する(A4 用紙 5 枚以上). 提出期限:??月?日(月)提出場所:メディカルシステム工学科事務室(工学部 16 号棟 407 号室)のレポート受け
- 5. 解剖実習見学(医学部解剖実習室) [実施日時・詳細未定]
- [評価方法・基準] 出席とレポート提出を行い,出席点とレポートの内容を評価し採点を行い,総計で 60 点以上を合格とする.

[備考] 医療現場の事情によって,各実習項目の実施日は変更される可能性がありますので,前もってシラバスを確認して下され.

T1L101101

授業科目名: ディジタル回路 科目英訳名: Digital circuit 担当教員 : 大沼 一彦

単位数: 2.0 単位開講時限等: 3 年前期月曜 2 限授業コード: T1L101101講義室: 工 15 号棟 109 教室

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 50

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

- [授業概要] ディジタル回路の基本構造と動作原理を説明する。数学的基礎として、ブール代数と論理演算、および論理 関数の簡単化について講義をし、それを基礎にして、組み合わせ回路、順序回路、演算アルゴリズム、計算機の基 本構造を説明する.
- [目的・目標] ディジタル回路の基礎を理解すると共に簡単なディジタル回路の設計,タイミングチャートによる検証ができるようになることを目的とする。1.ディジタル回路で1,0の2値を用いる演算が基本である。その基本を使い、複雑な論理を簡略化することができるようになる。2.10進数を2進数で表す回路、大小を比較する回路等を学び、簡単な論理回路が設計できるようになる。3.記憶をする回路(フリップフロップ回路)の基本原理と様々な記憶回路を学び、それを用いて現実の問題を設計できるようになる。また、時間とともに、値がどのように変化するのかを表すタイムチャートの読み方について学ぶ。4.ここまでの知識をもとに電子計算機の構造と動作原理について学ぶ
- [授業計画・授業内容] ディジタル回路の数学的基礎から始まり、論理関数の簡略化、簡単な論理回路の説明を行い、簡単な論理回路の設計ができるようになる課題を出す。さらに、記憶の原理、それを行うさまざまなフリップフロップ回路を紹介し、記憶を使った応用回路を作る方法を課題により習得する。最後に計算機の原理について講義する。
 - 1. ディジタル回路の基礎 ディジタルとアナログの違い、10進数から2進数への変換、2進数の補数、足し算、引き算について講義する。2進数の特有の方法について理解する。
 - 2. ブール代数 論理和、論理積、否定に関する交換則、べき等則、結合則、分配則、吸収則、ドモルガンの定理について講義をする。これらの知識をもとに、真理値表から論理式が書けるように練習問題を行う。
 - 3. カルノー図による論理式の簡略化 2、3,4,5変数の場合のカルノー図を用いた論理式の簡略化について講義し、練習問題を通して、理解を深める。
 - 4. 組合せ回路 1エンコーダー、デコーダー、マルチプレクサー、パリティーチェック回路について説明する。
 - 5. 組合せ回路 2 2 進数の加減算の方法、半加算器、全加算器など加減算回路について説明する。多ビットへの応用回路について説明する。
 - 6. 順序回路 基本であるフリップフロップ回路の導入、NOR 回路による情報の記憶について詳細に説明する。 タイムチャートにり、セット信号、リセット信号により出力がどのよに変化するのかを説明すす。
 - 7. D, T、JKフリップフロップ 順序回路のさまざまな展開について説明する。また、タイムチャートを用いてどのタイミングで動作するのかについて説明する。マスタースレーブ型の安定性について説明する。
 - 8. 順序回路の応用 自動販売機の回路を順序回路にて作成する過程 状態遷移図、励起表、励起回路、出力回路と順を追って説明する。また、似たような練習問題を解くことで、応用力を身につける。
 - 9. カウンター1 2 進数のカウンターの回路を様々なフリップフロップで作製する回路の動作原理を説明する。
 - 10. カウンター 2 5 進のカウンター、 1 0 進のカウンターを作製する方法について説明する。
 - 11. トランジスターとCMOS ダイオード、トランジスターの原理の説明、PMOS,NMOS,CMOS の動作原理の説明、トランジスターによる NOT 回路の紹介、PMOS,NMOS を使った NAND,NOR 回路の説明
 - 12. ディジタル計算機 今まで説明した順序回路、組み合わせ回路を用いて、単純な計算機の回路を紹介する。また、この計算機を動かすアッセンブル言語についても説明する。
 - 13. AD変換とDA変換 アナログからディジタルへ、またその逆の信号の変換について説明する。
 - 14. まとめと総合演習 1 今までの知識をもとに練習問題を解く。またそれについて解説する。
 - 15. まとめと総合演習 2 今までの知識をもとに練習問題を解く。またそれについて解説する。
 - 16. 期末テスト 必要な準備学習 総合演習の資料を参考に、授業全体の復習をしておくこと

[キーワード] ブール代数、組み合わせ回路、順序回路、計算機基礎

[教科書・参考書] 参考:ディジタル回路 伊原充博他 コロナ社わかりやすい論理回路 三堀邦彦 他 コロナ社

[評価方法・基準] 上記目標の達成度を評価する.講義中に数回レポートを科し,次々回の講義で提出させる.評価の配分は,期末テスト結果80%,レポート評価20%とする.総合して60点以上を単位取得の達成度に達したものとみなす。

[関連科目] 電子回路、情報数学

[履修要件] 特になし

T1L102001

授業科目名: 情報数学 (メディカル) 科目英訳名: Mathematics for Information Science 〔専門科目共通化科目〕

担当教員 : 山本 悦治

単位数 : 2.0 単位 開講時限等: 3 年前期火曜 2 限 授業コード: T1L102001 講義室 : 工 17 号棟 214 教室

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 50

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

- [授業概要] 情報科学の基礎となる数学的な素養を学ぶことに主眼をおいて学習する。学習を通じて数学的な情報処理の方法、離散的な数値の扱い方に慣れ、数学的基礎の素養が身につくように学ぶ。
- [目的・目標] 情報数学の学習を通じて、数学的な素養に慣れ親しみ、離散的な思考を身につけ、論理的思考、分析的思考、創造的学習法などの基礎を習得することを目標とする。
- [授業計画・授業内容] 以下の項目に沿って授業を進め、適宜、演習問題を行う。また、授業の進展度に応じて演習問題のレーポートなどの宿題を課し、授業への理解度のチェックと手助けを行いながら進める。
 - 1. 集合の概念と表記法の説明
 - 2. 関数の概念と表記法、演算についての説明
 - 3. 順列と組合せの概念とそれらの公式についての説明
 - 4. 10 進数と n 進数の説明
 - 5. 論理代数の概念とそれらの表記法について説明
 - 6. プール代数の基礎と論理ゲート
 - 7. カルノー図の概念と表記法、および述語論理について
 - 8. グラフ理論の基礎概念と連結性について
 - 9. いろいろなグラフと二つの古典的問題について
 - 10. 結婚の問題とラテン方陣について
 - 11. 有向グラフとネットワークプラニングについて
 - 12. オートマトンの概念と有限状態機械について
 - 13. 有限オートマトンと文脈自由文法について
 - 14. チューリング機械の概念と定義について
 - 15. 上記で学んだことの演習問題の実践

[キーワード] 情報数学、離散数学

- [教科書・参考書] 教科書:情報科学のための離散数学 著者:柴田正憲、浅田由良 出版社:コロナ社;初版第 10 刷版 (2003/03)/ 副教科書:離散数学 牛島和夫編著、相 利民、朝廣雄一共著 出版社:コロナ社;初版第 1 刷版 (2006/9)
- [評価方法・基準] 定期試験、レポート、出席日数を70:10:20の割合で評価する。定期試験時に不正があった場合には工学部の規定に従って対処するほか、レポートの提出期限が守られなかった場合には評価に影響を与えることがある。
- [関連科目] 信号処理論、数値計算、パターン認識、データ構造とアルゴリズム、コンピュータグラフィクス、統計、確立など

[履修要件] 少なくとも高校の理系数学程度の理解

[備考] 学習の過程でその都度、演習問題を行い、学んだ内容が理解できているかをチェックする方法を採用する。

T1L103001

授業科目名: 回路理論 I (メディカル) 科目英訳名: Electric Circuit Theory I

担当教員 : 岩坂 正和

単位数: 4.0 単位開講時限等: 3 年前期水曜 5,6 限授業コード: T1L103001, T1L103002講義室: 工 17 号棟 215 教室

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

- [授業概要] 回路の基礎のうち、直流回路および交流回路について必要最小限の内容について説明する。最も簡単な直流 回路が理解できるように講義を進める。インピーダンスの概念を用いることにより交流回路の解析も同様に行なえ ることを理解させる。
- [目的・目標] 一般目標: 電気回路の基本的な考え方、表現方法、解析方法及び物理的現象の意味などの電気電子工学の基礎知識を学習する。さらに、演習問題を繰り返し解くことによってこれら基礎知識の理解を一層深め、医工学に必要な電気的センスを身に付けることを目的とする。到達目標① 知識・理解 直流回路・交流回路のしくみに関する知識を獲得し,そのはたらきを理解することができる② 思考・判断 回路図を分析し回路方程式を組み立てる判断力を養う。交流回路の分析を行う際に最適な定理を活用できること。③ 関心・意欲演習の際に積極的に挙手して取り組む姿勢をみせること。授業中に回路に関する討論を行う際,積極的に参加できること。④ 態度 出席状況 良好な出席状況である必要がある。また,授業中に私語などを慎む必要がある。宿題レポートなどを提出期限までに出すことができる。⑤ 技能・表現 等価回路の作成の際に,効率的かつ独自の考え方で等価回路をあみ出すことができ,その導出過程を理解しやすいように記述できること。
- [授業計画・授業内容] 直流回路における電圧、電流、電力の物理的意味、直並列接続、オームの法則、キルヒホッフの法則などの基礎知識を学ぶ。続いて、交流回路における電圧、電流の定義、インダクタとキャパシタの働き、インピーダンスとアドミタンスの概念を理解し、交流回路の複素数表現について学ぶ。さらに、網目解析法、節点解析法、電気回路の諸定理を学ぶことにより線形回路の解析法を習得する。授業中に行う演習以外に,授業外学習用の演習問題を配布する。予習・復習とともに授業外演習問題を自己学習に活用することで十分な理解がなされる。下記のWeb(教員のホームページ)の講義受講者専用サイトにて授業進行状況・資料について確認を行うことが可能である。授業・演習問題についての質問・模範解答をこのホームページで知ることができる。
 - 1. 導入 回路理論が医工学の中でどのように用いられているか概説する。
 - 2. 電気回路の基礎(電源、電圧、電流) 電源、電圧、電流の定義を学び、これら諸量の物理的意味を理解する。 抵抗回路 抵抗とオームの法則、直流電圧源
 - 3. 抵抗における電力、抵抗の接続、電流源と電圧源 演習 回路素子とその性質
 - 4. 回路と微分法方程式
 - 5. 正弦波と複素数 正弦波交流 複素数、正弦関数のフェーザ表示
 - 6. 交流回路と記号的計算法
 - 7. インピーダンスとアドミタンス
 - 8. 電力、直並列回路 演習
 - 9. 等価回路
 - 10. 共振回路
 - 11. 相互インダクタンスと変成器 相互インダクタンス 回路としての変成器
 - 12. 回路の方程式 回路のグラフとキルヒホッフの法則
 - 13. インピーダンス行列とアドミタンス行列 回路の双対性、電力の保存則 演習
 - 14. 回路に関する諸定理 重ね合わせの理
 - 15. 相反定理(可逆定理), テブナンの定理 演習
 - 16. 期末試験

[キーワード] 電気回路,回路素子,回路の方程式

[教科書・参考書] 開講時に呈示する

[評価方法・基準] 期末試験、レポート提出および出席状況などにより総合的に判定する。単位認定評価に用いる各項目の%を示す。(全体で 100 点満点とした場合)[20 %]直流回路・交流回路のしくみに関する基礎的な知識を獲得し、そのはたらきを理解することができるか?(演習レポート,講義中の演習への積極的関与,中間小テスト・期末テストの結果をもとに採点する)[40 %]回路図を分析し回路方程式を組み立てることができるか?交流回路の分析を行う際に最適な定理を活用できるか?(演習レポート,講義中の演習への積極的関与,中間小テスト・期末テストの結果をもとに採点する)[30 %]効率的かつ独自の考え方で等価回路をあみ出すことができ、その導出過程を理解しやすいように記述できるか?(演習レポート,講義中の演習への積極的関与,中間小テスト・期末テストの結果をもとに採点する)[10 %]出席状況

[関連科目] 電磁気学入門 1,電磁気学入門 2,電子回路,ディジタル回路

[履修要件] 回路理論1の受講開始に際し,電磁気学入門2および電子回路を履修開始している必要はない。 * 線形代数の知識が必須であり,回路理論受講開始時点で既に線形代数を受講済みのはずであるが,線形代数の単位取得は必須でない。

Γ1L104001

[専門科目共通化科目]

授業科目名: 生体生理工学 I

科目英訳名: Biological and Physiological Engineering I

担当教員 : 五十嵐 辰男

単位数 : 2.0 単位 開講時限等: 1 年前期月曜 4 限 授業コード: T1L104001 講義室 : 工 17 号棟 113 教室

科目区分

2013 年入学生: 専門必修 F10 (T1K4:メディカルシステム工学科 (先進科学), T1L:メディカルシステム工学科)

[授業の方法] 講義・発表

[受入人数] 40 名程度

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] ヒトの「個」としての成り立ちを理解し、生体に対する工学的介入に必要な基礎的知識を学習する。生体の発生・進化を解剖学・生理学的に解析し、環境適合と生体機能の整合性考察することで「個」としてのヒトの存在を理解し、工学機器の医療への貢献の手法を考察する。

[目的・目標] 時間とスケール、および環境を軸として、それぞれの切り口からヒトの解剖・生理機能を理解し、医療に おける工学的技術の介入とその結果の見通しを考察する能力を習得する。

[授業計画・授業内容] テー目を決めてグループ討議を行うチュートリアル形式で授業を行う。各グループの発表の後に 要点を補うミニレクチャーを行う。

- 1. 生体の構造・発生と合目的性
- 2. 骨格の意味
- 3. 運動機構
- 4. 運動制御
- 5. 感覚と情報処理
- 6. 視覚・聴覚・味覚
- 7. 代謝とエネルギー
- 8. 吸収(消化器)
- 9. 排泄(腎・尿路)
- 10. 呼吸器・循環器
- 11. 免疫系・造血器と情報処理
- 12. 生殖・内分泌と情報伝達
- 13. 生体と物理的外力1
- 14. 生体と物理的外力2
- 15. 生命倫理、医用機器および治療法の進化
- 16. 試験

[キーワード] 解剖学、生理学、生化学、栄養学、医用工学

[教科書・参考書] (推薦図書)ヒトのからだ(医歯薬出版)、トートラ人体解剖生理学(丸善株式会社)、ギャノング「生理学」(丸善出版)、「アトラス解剖学」(西村書店)、「Molecular Biology of the Cell」(Garland Publishing, Inc)

[評価方法・基準] 毎回レポートを提出、正確な解剖学、生理学の理解および考察の程度を評価、医療機器への応用力も 評価。レポート提出状況及び筆記試験の結果で評価。

[関連科目] 解剖学、生理学、生化学、栄養学 、比較解剖学、外科学、機械工学

T1L105001

授業科目名: データ構造とアルゴリズム

科目英訳名: Data Structure and Algorithm

担当教員 : 菅 幹生

単位数 : 2.0 単位 開講時限等: 2 年後期水曜 3 限 授業コード: T1L105001 講義室 : 工 17 号棟 111 教室

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[専門科目共通化科目]

[授業の方法] 講義

[受入人数] 45

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[授業概要] リスト,スタック,木などの様々なデータ構造と,それを取り扱う基本的なアルゴリズムを通して,アルゴリズムの設計や解析をするための基本的な手法を修得する。また,種々の優れたアルゴリズムの考え方を通し,問題の本質の捉え方を学ぶ。

[目的・目標] 講義を通して,アルゴリズムとデータ構造について学習し,プログラミングの方法論を理解する。

[授業計画・授業内容] リスト,スタック,木などの様々なデータ構造と,それを取り扱う基本的なアルゴリズムについて講義を行う

- 1. アルゴリズムとは 必要な準備学習 教科書の 1.4 節を読んでおくこと
- 2. アルゴリズムと計算量 必要な準備学習 第1回目の授業にて配布した授業資料を読んでおくこと
- 3. 基本的なデータ構造 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 4. 配列,ポインタ,リンク 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておく こと
- 5. リスト (スタックととキュー) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 6. 再帰的手続き 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 7. 文字列照合(単純照合法, KMP法) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 8. 文字列照合(KMP 法の復習と BM 法) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 9. 木構造 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 10. グラフ構造 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 11. データ整列(バブルソート他) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 12. データ整列(クイックソート) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 13. データ探索(表探索,ハッシュ法) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 14. データ探索 (ハッシュ法,木構造探索) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 15. これまでのまとめ 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 16. 期末テスト 必要な準備学習 授業全体の復習をしておくこと

[キーワード] データ構造,アルゴリズム,プログラミング

[教科書・参考書] 教科書:データ構造とアルゴリズム著者:斎藤信男, 西原清一出版社:コロナ社 ISBN:4339000442

[評価方法・基準] 上記目標の達成度を評価する.評価の配分は,期末テスト 80 %,レポート・出席態度 20 %とする.総合して 6 0 点以上を単位取得の達成度に達したものとみなす。

「関連科目〕プログラミング基礎,メディカルシステム実験 I,メディカルシステム実験 II

T1L106001

授業科目名: 電子回路

科目英訳名: Electronic Circuit

担当教員 : 中口 俊哉

単位数 : 4.0 単位 開講時限等: 3 年後期月曜 1,2 限 授業コード: T1L106001, T1L106002 講義室 : 工 17 号棟 211 教室

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

- [授業概要] 今日の生活や産業界に大きく貢献し、多くの機能を有する電子回路について学習する。 p n 接合ダイオード、バイポーラトランジスタ、 F E T の基礎特性, 演算増幅器を理解し、これらの応用回路の動作および回路設計法について学ぶ。
- [目的・目標] 電子回路の基礎ならびに、電子回路を応用した機器の理解を深める。
- [授業計画・授業内容] 電子回路に必要な基礎,ダイオードの特性,バイポーラトランジスタのスイッチング特性,バイポーラトランジスタの静特性,非安定マルチバイブレータ,単安定マルチバイブレータ,双安定マルチバイブレータ,バイポーラトランジスタを用いた増幅回路,FET(電解効果トランジスタ)の基礎特性,FETを用いた増幅回路,hパラメータによる等価回路,変調・復調 差動増幅回路,
 - 1. 電子回路に必要な基礎 工学における電子回路の果たす役割および応用などについて触れ,電子回路の重要性を認識させると共に,本講義を受講する上での心構えについて述べる
 - 2. 半導体の基本特性 半導体の構造と電流の流れについて解説する
 - 3. ダイオードの特性 pn接合ダイオードの特性について述べる.順方向および逆方向の電圧・電流特性,スイッチング時の動特性などについて解説する
 - 4. バイポーラトランジスタのスイッチング特性 バイポーラトランジスタには p n p 型と n p n 型があることを説明し,バイポーラトランジスタのオン・オフ動作を解説する
 - 5. バイポーラトランジスタの静特性 バイポーラトランジスタの直流回路での動作,すなわち静特性について 解説する
 - 6. バイポーラトランジスタを用いた基本増幅回路(1) バイポーラトランジスタの小信号入力に対する特性 について解説する.
 - 7. バイポーラトランジスタを用いた基本増幅回路(2) 第6回の続きを解説する
 - 8. R C 結合増幅回路
 - 9. 直接結合増幅回路
 - 10. 变成器結合增幅回路
 - 11. 高周波増幅回路
 - 12. FETの基礎特性 FETにはp チャンネル型とn チャンネル型があることを述べ,これらの直流回路での動作,すなわち静特性について解説する
 - 13. FETを用いた増幅回路 FETの小信号入力に対する特性について解説する.また,各種増幅回路の動作 および設計法について解説する
 - 14. 帰還増幅回路
 - 15. トランジスタ回路の復習、演習
 - 16. 演算増幅器の動作原理と基本特性 集積電子回路で学ぶ演算増幅器の基本ついて解説する
 - 17. 差動増幅回路 演算増幅器の入力回路である差動増幅回路について解説する
 - 18. 線形回路への応用(加算、積分、微分)
 - 19. 非線形回路への応用 (ダイオード応用回路、掛算器)
 - 20. 能動フィルタ (演算増幅器を用いた ローパスフィルタ、ハイパスフィルタ、バンドパスフィルタ) ボード線 図の書き方
 - 21. 演算増幅器 演習
 - 22. 発振回路 LC発振回路
 - 23. 発振回路 R C 発振回路 水晶発振回路
 - 24. 变復調回路 振幅変調
 - 25. 变復調回路 周波数変調 位相変調
 - 26. 電源回路 整流回路
 - 27. 電源回路 平滑回路
 - 28. パルス波形の定義
 - 29. 非安定マルチバイブレータ 発振回路として使われる非安定マルチバイブレータの動作原理について解説する
 - 30. 単安定および双安定マルチバイブレータ パルス整形回路などに用いられる単安定マルチバイブレータ,フリップ・フロップメモリー回路として用いられる双安定マルチバイブレータの動作原理について解説する
- [教科書・参考書] 教科書 電子回路基礎 根岸照雄 ほか コロナ社参考書 医・生物系のための電気・電子回路 堀川宗之著 コロナ社 電子回路 須田健二、土田英一 共著 コロナ社 Integrated Electronics: Analog and Digital Circuits and Systems (McGraw-Hill electrical and electronic engineering series)

[評価方法・基準] 授業時間中に行う試験の平均点が60%以上で合格とする。最終的には出席点(その時間に行われた内容に対する設問に答える)を加味して判定する

T1L107001

授業科目名: システム制御理論 科目英訳名: System Control Theory

担当教員 : 兪 文偉

単位数 :4.0 単位 開講時限等: 3 年後期月曜3 限 /3 年後期木曜3 限

授業コード: T1L107001, T1L107002 講義室 : エ 17 号棟 211 教室

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

目的・目標] 本講議の前半では古典制御理論の基礎である伝達関数、周波数伝達関数および伝達関数周波数伝達関数に基づく安定性理論をできるだけわかりやすく説明し、フィードバック制御系の基本的な考え方と理論的解析手法を理解させる。科学計算,解析オープンソフトウエア Scilab の使い方,システム制御理論への応用についても触れる. 後半は、線形フィードバックシステムの解析、設計手法を、電気系,機械系,生体運動系の実例を挙げ講述し、習得させる。最後に,古典制御理論の限界を明らかにし、現代制御理論の基礎となる状態方程式を導入する。

- 1. 制御の歴史(古典制御理論,現代制御理論),制御対象の分類
- 2. ブロック線図 (等価変換)、フィードバックとフィードフォーワード制御
- 3. 数学的準備:ラプラス変換1
- 4. 数学的準備:ラプラス変換 2
- 5. 数学的準備:ラプラス逆変換,そのほか
- 6. 電気系,機械系,生体系の微分方程式
- 7. 伝達関数,ブロック線図等価変換
- 8. 演習 1 (ラプラス変換,逆変換,伝達関数,ブロック線図等価変換)
- 9. システム応答,安定性,極と零点
- 10. ラウスとフルビッツの安定性判別
- 11. 演習 2 (システム応答,安定性判別)
- 12. 周波数応答
- 13. ベクトル軌跡とナイキスト軌跡
- 14. ボード線図
- 15. 演習 3(ベクトル軌跡、ボード線図)及び中間テスト
- 16. 中間テスト問題解説,後半の概略の説明
- 17. Scilab によるシステム制御の基礎,最小位相系
- 18. 安定余裕
- 19. ナイキスト安定判別法 1
- 20. ナイキスト安定判別法 2
- 21. 演習 4(安定余裕, ナイキスト安定性判別)
- 22. 制御仕様, 定常特性
- 23. 周波数応答による補償器の設計 1
- 24. 周波数応答による補償器の設計 2
- 25. 根軌跡による補償器設計
- 26. PID 補償器のパラメータ調整
- 27. 演習 5(PID チューニング, 根軌跡)
- 28. 実習:倒立振子制御システムの構築と実験-1
- 29. 実習:倒立振子制御システムの構築と実験-2

30. 状態方程式、状態方程式の導出(電気、機械、生体運動系の例)、状態方程式と伝達関数の関係

[キーワード] フィードバック制御、伝達関数、周波数応答, 状態方程式

[教科書・参考書] 制御工学(斉藤制海,徐粒著),森北出版

[評価方法・基準] リポート, 中間テスト成績, 期末テスト成績より, 評価を行う

T1L108001

授業科目名: 専門英語 I

科目英訳名: Technical English I 担当教員 : (太田 真智子)

単位数 : 2.0 単位 開講時限等: 3 年前期火曜 3 限 授業コード: T1L108001 講義室 : 工 17 号棟 212 教室

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受入人数] 必修科目として履修する学生のみを受け入れる。

- [授業概要] この授業では、「専門英語の力」を三層構造であると規定する。具体的には、第一階層「普遍教育までを通じて習得した英文法および基本語彙の運用能力」、第二階層「専門を問わず、学術の場では共通して重要な英文法および語彙の運用能力」、および第三階層「メディカルシステム工学分野に特化した語彙の運用能力」から成るとする。すなわち、手持ちの英語力に専門用語を上乗せしただけでは、英語論文を正しく読み書く力は培えない、との立場で設計した授業を行う。
- [目的・目標] 最終目的前途と志のあるメディカルシステム工学科生の英語学習は、英語論文の良き書き手となることを目指してこの先も長く続くことを理解し、自分で自分を律していつまでも学び続けることができる,揺るぎない基盤を築く。目的 1. 講師が提案する「読むときに実行すべき八項目」を理解し、励行する。2. 第二階層の充実なくして専門英語力は充実し得ないことを理解し、「要習得」と明示された事項を身につける。3. 第三階層の語彙の特徴を理解し、「要習得」と明示された事項を身につける。4. 「読むときに実行すべき八項目は書くときの引き出しを増やす八項目としても役立つのだ」という実感を味わう。5. 今後の学習計画を立案して解散する。
- [授業計画・授業内容] 英語を母語としない理系大学生・大学院生向けの独習書として書かれた洋書を参考テキストとして使用し、特に、第二階層に該当する事項を優先的に解説する。テキストの理解に役立つ演習を講師が作成し、実施および解説する。テキストでは扱われていないが第二階層の充実および第三階層の形成に役立つ事項については、講師が資料を作成し、配布および解説する。特に、体系的に学ぶ機会の少ない句読記号(punctuation marks)については優先的に解説する。授業は、受講生が「単語ノート」を作成し、「八項目」を適用して予習している前提で進める。目的1から4の達成を支援する演習の一部は、授業内および授業外の提出課題として実施し、成績根拠材料として扱う。
 - 1. 手持ちの英語力を点検する
 - 2. 専門英語の三層構造を理解する読むときに実行すべき八項目を理解する
 - 3. 専門英語を体験する英語論文の構造を理解する
 - 4. 読んで書いて以下を身につける第二階層:英文法1第二階層:語彙1
 - 5. 読んで書いて以下を身につける第二階層:英文法2第二階層:語彙2
 - 6. 読んで書いて以下を身につける第二階層:英文法3 第二階層:語彙3
 - 7. 読んで書いて以下を身につける第二階層:英文法4第二階層:語彙4
 - 8. 読んで書いて以下を身につける第二階層:英文法5第二階層:語彙5
 - 9. 読んで書いて以下を身につける第二階層:英文法6第二階層:語彙6第三階層:語彙1
 - 10. 読んで書いて以下を身につける第二階層:英文法7第二階層:語彙7第三階層:語彙2
 - 11. 読んで書いて以下を身につける第二階層:英文法8第二階層:語彙8第三階層:語彙3
 - 12. 読んで書いて以下を身につける第二階層:英文法 9 第二階層:語彙 10 第三階層:語彙 4
 - 13. 読んで書いて以下を身につける第二階層:英文法 11 第二階層:語彙 11 第三階層:語彙 5
 - 14. 読んで書いて以下を身につける第二階層:英文法 12 第二階層:語彙 12 第三階層:語彙 6
 - 15. 向上した英語力を証明する今後の学習計画を立案する
- [キーワード] 理系英語, 学術英語, 英語論文, 学術英語共通基本語彙 (general academic vocabulary), 専門用語, 句読法 (punctuation), 句読記号 (punctuation marks), 英英辞典, 自律的学習

- [教科書・参考書] 参考テキスト: Science Research Writing: A Guide for Non-Native Speakers of English (ISBN: 978-1848163102) 注:当初、必携テキストと想定しましたが、部数確保が困難です。このシラバスを読んで興味を持った人は自力で入手しておくことを推奨します。講師自作の配布資料。予習・復習には、授業で紹介する英英辞典を活用することを推奨する。第一階層に属する英文法事項の復習には、「徹底例解ロイヤル英文法 改訂新版」 (ISBN: 978-4010312780 または各種電子データ版) を推奨する。
- [評価方法・基準] 学期末に大きな試験を行うのではなく、学期を通じて小さな課題を複数用意する。各課題には、その 意図に応じて、活動点、理解点、またはその両方を設定し、成績根拠材料とする。活動 50%、理解 50%

[関連科目] 専門英語 II

[備考] 成績根拠材料となる課題は大きく、1. 授業中に出題され、当該授業終了を提出期限とする課題 2. 授業中に出題され、指定授業冒頭を提出期限とする課題 3. 授業中に出題され、Moodle 経由で指定期限までに提出する課題 4. Moodle 経由で出題され、Moodle 経由で指定期限までに提出する課題に分かれる。期限内に提出された課題には、設定された活動点、理解点、またはその両方が与えられる。【提出期限を過ぎて課題を提出するには、関係する授業の公欠届が必要である】

T1L109001

授業科目名: 生体力学論

科目英訳名: Biological Dynamics

担当教員 : (太田 裕治)

単位数 : 2.0 単位 開講時限等: 3 年前期集中

授業コード: T1L109001 講義室

2013 年度は開講しない

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受入人数] 40

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

- [授業概要] 生体力学を学ぶために必須である力学基礎事項(機械力学・材料力学)に関し講義する.材料内部に働く力, およびそれによる変形の解析法を理解するとともに,バイオメカニクスの基礎として,生体の構造や形態,力学的 性質に関し講義する.
- [目的・目標] 応力とひずみ, せん断とねじり, はりの曲げ, 座屈などの材料力学的事項を理解し, 具体的な問題を解く 実践力を身につける. ついで、階層的な生体の構成を理解するとともに、生体・組織内部における力学的現象を理解する.
- [授業計画・授業内容] まず基本的な材料力学事項について学びます.つぎに理解進度にあわせて生体力学に関連する講義を行います.3回のテストを含み,概ね以下のスケジュールで進めます.テストで間違えた学習単元はかならず復習を行っておくこと.2012年度は集中講義形式(3日間)にて行います.
 - 1. 導入(バイオメカニクス,生体組織の機械的特性,生体の階層性など),仮想切断と力の釣り合い,引張と圧縮,応力とひずみ,せん断とねじり,静定・不静定問題,エネルギー法,仮想仕事の原理.以上の項目に関するテストならびに解説(5コマ分).
 - 2. 復習,はりの曲げ,せん断力線図と曲げモーメント線図,はりの応力と変形,はりのたわみ,ミニ実験,座屈.以上の項目に関するテストならびに解説(5コマ分).
 - 3. トラス構造,有限要素法への展開,剛性マトリクス,粘弾性モデル,流体力学基礎事項と医療デバイスへの応用.以上の項目に関するテストならびに解説(5コマ分).

[キーワード] 力学,材料力学,応力,バイオメカニクス,バイオレオロジー

[教科書・参考書] 参考書?材料力学,村上敬宜,森北出版(ISBN コード: 4-627-60510-2)?The PHYSIOLOGY COLORING BOOK, Wynn Kapit 他,ISBN 0-321-03663-8?The ANATOMY COLORING BOOK,Wynn Kapit 他, ISBN 0-8053-5086-1

[評価方法・基準] 3回のテストの平均点にて評価する.

T1L11110

授業科目名: デザイン論(メディカル)

科目英訳名: Theory of Design for Medical Equipments

担当教員 : 久保 光徳

単位数: 2.0 単位開講時限等: 3 年後期水曜 4 限授業コード: T1L111101講義室: 創造工学 2F

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受入人数] 30 名程度

[受講対象] メディカルシステム工学科学生のみ

[授業概要] 医療機器の開発では、ヒト・モノ・環境の三つの視点から検討を行う必要がある。そのために複雑な問題を扱うために開発・適用されてきたシステム工学的手法を用いて,医療機器に関わる問題探索,現状分析を行う。そして明確にされた問題点を解決するためのデザイン提案を試行し,これからの医療機器の可能性を考察する。

[目的・目標] 設計の一般的な展開の方法および考え方を学ぶと同時に,医療機器の現状理解を通して,これからの可能性について考えさせる。

[授業計画・授業内容] システム工学的手法をベースにおいて設計体験を簡単な講義とグループごとの演習形式で実施する。

- 1. 本講義の目的の実施方法に対する説明グループ分け
- 2. 医療機器に対するイメージ構造 ISM 法概説とキーワードの選定
- 3. 医療機器に対するイメージ構造 ISM 法の実施, 読み取り
- 4. 医療機器に対するイメージ構造 ISM 法の実施, 読み取り, プレゼンテーション
- 5. 医療機器の現状分析 グループごとに調査対象とする医療機器を決定する。
- 6. 医療機器の現状分析 グループごとに調査した項目に従いアイテム・カテゴリーデータを作成する。
- 7. 医療機器の現状分析 数量化理論 III 類にしたがって医療機器の方向性とマッピングを実施する。
- 8. 医療機器の現状分析 数量化理論 III 類にしたがって医療機器の方向性とマッピング結果をもってプレゼンテーションを実施する。
- 9. 模擬的医療機器の開発 設計要件の抽出 (シーンの設定)
- 10. 模擬的医療機器の開発 設計要件から形態への展開の試み
- 11. 模擬的医療機器の開発 CAD による設計 1
- 12. 模擬的医療機器の開発 CAD による設計 2
- 13. 模擬的医療機器の開発 制作 1
- 14. 模擬的医療機器の開発 制作 2
- 15. 制作した医療機器の評価

[キーワード] 医療機器,システム工学,デザイン

[評価方法・基準] 複数回の小レポートと最終プレゼンテーション・レポートで評価する。

[備考] 平成20年度まで開講していた「医療機器設計論」の読替科目である。

T1L112001

授業科目名: 生体生理工学 II

[千葉工大開放科目、専門科目共通化科目]

科目英訳名: Biological and Physiological Engineering II

担当教員 : 川平 洋

単位数: 2.0 単位開講時限等: 1 年後期火曜 6 限授業コード: T1L112001講義室: 工 17 号棟 112 教室

科目区分

2013 年入学生: 専門選択必修 F20 (T1K4:メディカルシステム工学科 (先進科学) , T1L:メディカルシステム工学科)

[授業の方法] 講義・発表

[受入人数] 40 名程度

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 生体の組織、解剖学・生理学・分子生物学を理解し、医学領域への工学的介入に必要な生体に対する基礎的知識を学習する。生体機能を理解し、臨床医学的見地から工学者の医療への関与を考察する。

[目的・目標] 外科学的見地から生体機能を理解し、医学領域に必要とされる生体工学の必要性を理解する。

- [授業計画・授業内容] 「臨床外科学、癌発生学、臓器発生学、免疫学」を基本とし、生体機能を組織レベルから臨床医学的レベルまで幅広く理解できるように質疑と討議を行う。出席だけでは不完全、発表、討議に参加する事を求める。講師の日程調整の関係から、臨時で日時が変更されることがある。
 - 1. オリエンテーション
 - 2. 外科学総論
 - 3. 胃癌の診断・治療
 - 4. 食道疾患総論・診断・治療
 - 5. 食道良性疾患の診断と治療
 - 6. 大腸良性疾患の診断・治療
 - 7. 大腸悪性疾患の診断・治療
 - 8. 肝臓疾患の診断・治療
 - 9. 胆道疾患の診断・治療
 - 10. 膵臓疾患の診断・治療
 - 11. 乳腺疾患の診断
 - 12. 乳腺疾患の治療
 - 13. 乳腺疾患の抗癌剤治療
 - 14. 膵臓発生と病気との関与
 - 15. 免疫学と生体機能の役割
 - 16. 試験

[キーワード] 組織学、解剖学、生理学、免疫学、発生学、病理学、外科学、消化器外学

[教科書・参考書] Sabiston Textbook of Surgery, The Washington Manual of Surgery.

[評価方法・基準] 講義内容について質疑応答を行い、討論内容について評価。レポート提出は適宜考慮する。講義への 積極的な参加と理解を、レポート内容より重視する。正確な生物学、分子生物学の理解および考察の程度を評価 し、医学、医療の基礎的知識の理解を目標とする。

[関連科目] 外科学、生化学、生理学、病理学、分子生物学、医学

T1L114001

授業科目名: コンピュータグラフィクス

科目英訳名: Computer Graphics

担当教員 : 大沼 一彦 単位数 : 2.0 単位 開講時限等: 3 年前期水曜 3 限 授業コード: T1L114001 講義室 : 工 17 号棟 211 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[授業概要] コンピュータグラフィックスは、物体の反射透過特性、光の性質を数学的に理解し、数値により形を作り、物体の反射透過特性を与え、光源から出た光線の反射透過を追いかけて目にたどりつく光を計算によって求めるものである。授業では線を生成する為の数学的な基礎、面を生成するための数学的な基礎について説明する。3次元空間における光線追跡の数学的な方法、面との交点を求める方法を説明する。図形の回転、移動、拡大の方法について説明する。3次元を2次元に変換する幾何学変換の方法を説明する。また、陰影をつける方法(シェーディング)において、照明、物体の反射特性との関係を説明する。

[目的・目標] CG において 2 次元、 3 次元図形、また、それらの組み合わせや移動を表現するための方法を理解し、光が与えられた時、物体での反射、屈折の計算方法を理解し、利用できるようになることを目的とする。 1 . 課題を通して、与えられた点よりベジェ曲線、スプライン曲線を描くことができるようになる。 2 .

- [授業計画・授業内容] 授業は座学を中心として,下記の項目の講義を行う.また理解を深めるために,簡易なプログラ ミング($\operatorname{Processing}$)を課題として設定し,理解度を確認する.最終的には物理法則に従った CG 作品を作成する ことで研究や開発に役立つ表示再現技術を習得する.
 - 1. ガイダンスコンピュータグラフィックスの歴史や活用事例を理解する.及び演習に使用する Processing の導 入方法及び基本事項の学習方法について述べる.
 - 2. モデリング-ポリゴン形状を構成するポリゴンやプリミティブの構造を学習する.
 - 3. モデリング-多項式曲面や複雑な形状を多項式で表現する方法を習得する.
 - 4. 三次元-回転/移動移動や回転の行列表現と同次座標系を理解する
 - 5. 三次元-射影変換立体空間における射影近似とその表現方法を習得する
 - 6. 光源-色温度と輝度発光源としてのランプ種や点・線・面光源の表現手法を理解するボリュームレンダリング 人体などの、体積データを表現する方法について紹介する。
 - 7. 光源-陰影と影物体と光源が織りなす影/陰を理解し,表現方法を学ぶ
 - 8. 材質-反射率計測2色性反射モデルやフレネル反射を理解する
 - 9. 材質-反射モデル Phong モデルを基本として多様な反射モデルを理解する
 - 10. レンダリング-陰面消去前後関係から陰面消去する手法とその計算方法を学習する
 - 11. レンダリング-Shading 様々な Shading の表現方法を学び,計算コストと精度を理解する
 - 12. 光線追跡リアルスティックな CG 再現のための表現手法を学ぶさらに、隣合う物体への反射の影響を計算す るラジオシティ法、光が集光するような表現を可能とするフォトンマッピングの方法についても紹介する。 必要な準備学習 第1回目の授業にて配布した授業資料を読んでおくこと
 - 13. CG の最新動向/作品演習
 - 14. CG の最新動向/作品演習
 - 15. CG の最新動向/作品演習
 - 16. 期末テスト

[キーワード] ポリゴン、モデリング、三次元空間、レンダリング、光線追跡

[教科書・参考書] ビジュアル情報処理 (CG-ARTS 協会) ISBN 978-4-903474-02-1

「評価方法・基準〕上記目標の達成度を評価する、講義中に数回レポートを科し、次々回の講義で提出させる、評価の配 分は、期末テスト結果 60 %、レポート評価 20 %、CG 作品 20%とする.総合して 6 0 点以上を単位取得の達成度に 達したものとみなす。

[履修要件] 線形代数、微積分、ベクトルについて学習してあること。

T1L115001

授業科目名: 数値計算

[専門科目共通化科目]

科目英訳名: Numerical Computation

担当教員 : 高橋 応明 単位数 : 2.0 単位

開講時限等: 3年前期火曜2限 授業コード: T1L115001 講義室 : 工 17 号棟 211 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受入人数] 50

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[授業概要] 最新の医療診断機器や画像処理、シミュレータなどに数値計算は不可欠である。本講義では、数式とプログ ラミングとの橋渡しとなる数値計算の基礎的な考え方、計算手法を学ぶことに主眼をおいている。微積分などの数 学的な基礎知識を習得していることを前提として学習をすすめる。

[目的・目標] 学習を通じて、数学的な素養に慣れ親しみ、数式の取り扱い、離散的な思考、論理的思考を身につけ、使 うことが出来るようになる。数値計算の基礎を習得し、必要な場合に適切な解法の選択が出来るようになることを 目標とする。

[授業計画・授業内容]

1. 数値計算の概要と実際例

- 2. 補間
- 3. 数值積分
- 4. 過渡現象
- 5. 常微分方程式1
- 6. 常微分方程式 2
- 7. 非線形方程式
- 8. 総合演習7回分の講義の復讐をしておく
- 9. 高次代数方程式
- 10. 連立1次方程式
- 11. 逆行列
- 12. 偏微分方程式 1
- 13. 偏微分方程式 2
- 14. 偏微分方程式3
- 15. まとめと総合演習 14 回分の講義の復讐をしておく
- 16. テスト

[教科書・参考書] 「数値計算法」戸川隼人、コロナ社

[評価方法・基準] 上記目標の達成度を評価する。講義中に演習・レポートを科す。試験結果 80% , 演習・レポート等 20%とする。

[関連科目] 線形代数学 A, 微積分学, 偏微分方程式, 応用数学

[履修要件] 線形代数学 A , 微積分学 , 偏微分方程式

T1L116001

授業科目名: 回路理論 II

科目英訳名: Electric Circuit Theory II

担当教員 : (上原 正啓)

単位数: 2.0 単位開講時限等: 2 年後期金曜 1 限授業コード: T1L116001講義室: 工 17 号棟 112 教室

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[授業概要] 回路理論 I で学んだ内容をベースに、今後、メディカルシステムを扱う上で役に立つ知識を学ぶ。

[目的・目標] メディカルシステムで用いられる電子回路や計測回路において、その基礎になるのは電気回路であり、基本を確実に習得することが重要である。本科目では基本となる考え方を学ぶことで、あらゆる応用に対応できる素地を作ることを目的とする。

- 1. 回路理論 I の復習。回路の基本法則、正弦波交流回路におけるインピーダンスやフェーザなどの概念を復習する。
- 2. 2 端子対回路(1) 2 端子対回路を行列表示し、回路解析に応用する。 Z 行列と Y 行列を導入し、 T 形回路、 形回路、格子形回路、相反回路、対称回路の Z 行列と Y 行列の特性を学ぶ。
- 3. 2 端子対回路(2) 2 端子対回路の縦続接続に有用な F 行列を導入し、T 形回路、 形回路、格子形回路、 理想変成器などの F 行列を求める。 Z 行列・Y 行列と F 行列との関係も学ぶ。
- 4. 2 端子対回路(3) 2 端子対回路の並列接続、直列接続、縦続接続などの応用例を学び、演習を実施する。
- 5. 分布定数回路(1) 電気信号の波長が回路の大きさと同等以下になる場合、インピーダンス等の定数が回路に沿って分布する分布定数回路として取り扱わなければならない。分布定数回路の基本概念、伝送線路の基本式、伝送線路上の電圧・電流分布、特性インピーダンスについて学ぶ。
- 6. 分布定数回路(2) 伝送線路を負荷で終端した場合の伝送線路上の電圧・電流分布と入力インピーダンス について学ぶ。伝送線路の結合点における反射と透過についても学ぶ。
- 7. 分布定数回路(3) 伝送線路上における電圧・電流の最大値と最小値、定在波比について学び、スミスチャートの使用法を修得する。

- 8. 分布定数回路(4) 分布定数回路についてまとめ、演習を実施する。
- 9. 過渡現象(1) 電圧の急変時やスイッチの開閉時には、今まで学んだ定常回路理論とは異なる現象が現れ、 記号法等の従来の回路解析手法が使えなくなり、過渡現象特有の解析方法が必要になる。RC回路、LC回 路の過渡現象を解析し、時定数やエネルギーの概念を学ぶ。
- 10. 過渡現象(2) 過渡現象の微分方程式の解法を学び、RLC回路の過渡現象における振動・減衰特性を理解する。
- 11. 過渡現象(3) ラプラス変換を使って、過渡現象の微分方程式を解く方法を学ぶ。ラプラス変換の応用として、回路自体をラプラス変換し、初期条件をも含めて回路に取込む s 回路法についても学ぶ。
- 12. 過渡現象(4) 過渡現象についてまとめ、演習を実施する。
- 13. 非正弦波交流回路(1) 通信情報を含んだ電気信号では、波形が非正弦波交流(ひずみ波)となる。この場合、信号は多数の正弦波の合成(フーリエ級数展開)で表わされる。方形波、三角波、のこぎり波などの電気信号をフーリエ級数展開する。
- 14. 非正弦波交流回路(2) 非正弦波交流回路の実効値、ひずみ率、電力、力率などを学ぶ。回路に非正弦波交流が入力された時の解析方法として、非正弦波交流をフーリエ級数展開し、各周波数成分ごとに応答を計算し、それらの結果を合成する方法を学ぶ。
- 15. 非正弦波交流回路(3) 非正弦波交流回路の応用例を学び、演習を実施する。
- 16. 期末試験を実施する。

[キーワード] 2端子対回路、分布定数回路、過渡現象、非正弦波交流回路

[教科書・参考書] 参考書「続 電気回路の基礎」西巻正郎、下川博文、奥村万規子 共著、森北出版

[評価方法・基準] 各項目ごとに実施する演習(20%) 期末試験(80%)で評価する。

[関連科目] 回路理論 I

T1L117101

授業科目名: 感覚情報処理

科目英訳名: Sensory Information Processing

担当教員 : 鈴木 昌彦

単位数: 2.0 単位開講時限等: 3 年後期火曜 4 限授業コード: T1L117101講義室: 工 17 号棟 215 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 50 名程度

[受講対象] 自学部他学科生 履修可

[授業概要] 生体生理工学の基礎を踏まえた上で、神経系の感覚情報処理や筋肉、骨、軟骨などの生体制御メカニズムを解明し、生体信号の計測法やその解析法について学習する。

[目的・目標] 神経系、筋肉、骨、軟骨などの詳細な構造と機能を理解し、感覚情報処理を含む生体制御メカニズムの輪郭を把握することを目的とする。

[授業計画・授業内容] 15 回の講義を視覚、聴覚、味覚と嗅覚、骨、軟骨、筋肉の生体制御に分け、プリント等の配布物 も用意しながら上記の順で進める。

- 1. ニューロンとシナプスについて
- 2. 中枢系・脳の構造
- 3. 視覚系の感覚器と情報処理
- 4. 聴覚・言語認知について
- 5. 鼻 舌の感覚器について
- 6. 神経疾患・治療
- 7. 骨・軟骨・筋肉の発生と発達生理
- 8. 骨・軟骨・筋肉の解剖と細胞生理1
- 9. 骨・軟骨・筋肉の解剖と細胞生理 2
- 10. 骨・軟骨・筋肉の治療 1

- 11. 骨・軟骨・筋肉の治療 2
- 12. 脊椎
- 13. 運動機能制御1
- 14. 運動機能制御 2
- 15. 運動機能制御とリハビリテーション

「キーワード〕中枢神経系、末梢神経系、感覚情報処理、筋肉・骨・軟骨の生体制御

[教科書・参考書] [参考書] 神経生理学(Robert F.Schmidt 編、内園、佐藤、金訳:金芳堂) やさしい生理学(岩瀬、 森本編集:南江堂)

[評価方法・基準] 筆記試験を1回(最終)行い、出席点との合計が60点以上を合格とする。

[備考] この科目は平成16年度入学生用の冊子のシラバスには「ディジタル回路」と記載されています。

T1L118001

授業科目名: 信号処理論

[専門科目共通化科目]

科目英訳名: Signal Processing

担当教員 : 山口 匡 単位数

: 2.0 単位 開講時限等: 3年前期木曜2限 授業コード: T1L118001 講義室 : 工 17 号棟 211 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] メディカルシステム学科の履修に必要な最低限の信号処理に関する理論および信号解析の手法について学 ぶ。本講義で学んだ内容を実際の研究や技術で応用するための例を示し、受講者が自分自身で高度な信号解析理論 や手法に発展させることができる内容とする。

[目的・目標] 本講義では、信号処理の基礎と理論、及び信号の解析手法、応用の方法を学び、最低限の信号処理法の知 識・技能が獲得できることを目標とする。

[授業計画・授業内容] 参考資料を元に作成したパワーポイント資料を適宜使いながら講義を行なう。また、授業内容の 理解を含め、その手助けのために、適宜、レポート課題や演習などの宿題を課せる予定である。

- 1. 信号処理の基礎
- 2. フーリエ変換
- 3. 離散フーリエ変換
- 4. ラプラス変換
- 5. 偏微分方程式への適用
- 6. Z 変換
- 7. 離散フーリエ変換と高速フーリエ変換
- 8. ウェーブレット変換
- 9. フィルタの設計
- 10. ディジタル画像処理
- 11. スペクトル解析
- 12. 信号処理の実際1
- 13. 信号処理の実際2
- 14. 医療分野における信号処理 1
- 15. 医療分野における信号処理 2
- 16. 最終試験

[キーワード] 情報理論,フーリエ変換,ラプラス変換,Z 変換,画像処理,フィルタ,スペクトル

[教科書・参考書] 参考資料「ディジタル信号処理と基礎理論,コロナ社」「電子情報通信工学シリーズ ディジタル信号 処理,森北出版株式会社」「ディジタル信号処理システムの基礎,森北出版株式会社」

[評価方法・基準] 授業の進行に応じて、適宜、レポート課題や演習問題の宿題を与え、授業による理解度のチェックと 評価を実施する。授業の最終には試験を行い、授業への参加状況、学習態度やレポート回答などをも加味して総合 的評価を行う。試験およびレポートなどでの不正があった場合には不可とする。

[関連科目] 情報数学, 数値解析, 微分積分, 統計解析など

[履修要件] 最低限の数学の基礎知識

T1L119101

授業科目名: 認知情報処理論(旧名称「視覚情報処理」)

科目英訳名: Cognitive Information Processing

担当教員 : 矢口 博久

単位数 : 2.0 単位 開講時限等: 3 年前期水曜 4 限 授業コード: T1L119101 講義室 : エ 17 号棟 111 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[授業概要] 人間の視覚情報処理について,心理物理学実験と網膜及び大脳視覚野の各部位での情報処理過程モデルを対応づけながら,空間特性,時間特性,運動視,立体視,色覚の諸機能について概説する。

[目的・目標] メディカルシステム工学に関連する視覚の基礎特性の理解,人間の知覚特性の評価,研究方法の理解,及びそれらを通して複雑な現象からの本質を捉える能力の鍛練を目的とする。

[授業計画・授業内容]

- 1. 視覚とは何か?視覚理解の本質
- 2. 視覚とは何か?視覚理解の方法
- 3. 眼球の仕組みは?眼球光学系と網膜
- 4. 眼球の仕組みは?視力と結像
- 5. 光はどのように捉えられるか?光受容細胞と標本化
- 6. 眼はどのようにして感度を調節しているのか?暗順応,明順応と光受容細胞の応答
- 7. 視力はどのようにして決まる?空間特性と網膜の細胞
- 8. 何故, 眼を動かすの?周辺視と網膜の不均一
- 9. 視覚系がフーリエ変換?視覚系の空間周波数特性。
- 10. 形状知覚と周波数特性
- 11. 大脳視覚野の空間周波数特性
- 12. 時間周波数特性
- 13. 色は何故見えるの?色覚のメカニズム
- 14. テニスボールを正確に打ち返すには?立体視と運動視
- 15. 試験

[キーワード] 視覚情報処理,網膜,大脳視覚野

[評価方法・基準] レポートと試験の成績をそれぞれ50点満点で採点し,合計点が60点以上を合格とする。

T1L122101

授業科目名: 空間設計論 (旧名称「医療空間設計論」)

科目英訳名: Spatial Design 担当教員 : 中山 茂樹

単位数 : 2.0 単位 開講時限等: 3 年前期火曜 1 限 授業コード: T1L122101 講義室 : エ 17 号棟 211 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

- [授業概要] 医療施設の空間構成とその利用の仕組みの差違が、患者の療養や医療・看護作業に大きく影響することを、 定性的・定量的に明らかにし、空間構成の合理化を学習する。また、医療施設の成長変化への対応や居住性の向上 などについて、根本的な検討を加え、新しい施設体系について構述する。
- [目的・目標] 空間や環境がその中で展開されるさまざまな活動を規定していることを知り、その対応関係および法則性を学ぶ。加えて、効率的な空間形態や配置がどのように組み立てられるかについて理解する。また、最新の医療技術や医学が求める空間の設計に関わる知識を習得する。
- [授業計画・授業内容] 建築計画の論理を構述する。その際、海外も含めた多くの事例とともに建築空間・環境の紹介も 含む。空間計画について演習的な作業をすることがある。
 - 1. 建築空間の目的と計画の技術的展開
 - 2. 空間と人間活動の対応関係(フィールドワークを含む)。
 - 3. 医療空間の歴史と今後の展開
 - 4. 日本の病院建築の問題点
 - 5. 医療空間の計画に影響を与える近未来予測
 - 6. 医療施設の全体計画
 - 7. 医療施設の用途変更
 - 8. 病棟の計画 患者の立場から
 - 9. 病棟の計画 医療・看護の立場から
 - 10. 診療部門の計画 外来部門の空間計画
 - 11. 診療部門の計画 診療施設の空間計画
 - 12. 供給部門と管理部門の空間計画
 - 13. 福祉施設の空間計画
 - 14. 医療・福祉施設の空間計画の未来
 - 15. 試験

[キーワード] 医療空間、病院建築、福祉施設、建築計画、ユニバーサルデザイン

[教科書・参考書] 毎回プリントを配布する

[評価方法・基準] 出席および講義中に行う演習課題、最終試験の成績による

T1L123001

授業科目名: 医用統計学

科目英訳名: Clinical Biostatistics

担当教員 : 林 秀樹 单位数 : 20 单位

単位数: 2.0 単位開講時限等: 3 年後期月曜 3 限授業コード: T1L123001講義室: 総 A5F 情報処理演習室 1

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受入人数] 毎回受講者の理解の程度を講師が個別にチェック致しますので、受け入れ人数の上限を 20 名程度とします。

[受講対象] 自学部他学科生 履修可

[授業概要] 基本的な統計学的手法のうち医療分野で頻用されるものに関し、基礎理論の概略と適用の実際、ピットフォールについて解説します。

- [目的・目標] 医療分野及び医工学研究で頻用される統計学的手法の理解と実践がこの講義の目的です。具体的には、各種医学論文に実際に用いられている統計解析の数値の解釈ができるようになること、自身の医工学研究において、必要とする統計学的手法は何であるかが自身で判断することができ、わかりやすいデータの提示方法を身につけ、正しい結果の解釈ができるようになることがこの講義の目的になります。
- [授業計画・授業内容] 講義は各回とも、それぞれのテーマに沿った解説と Excel 及び SPSS を用いた演習を組み合わせて行います。講義の最終回では、少人数のグループに分かれ、与えられたデータをもとに研究発表を行っていただきます。
 - 1. < Excel の基本操作> 収集したデータの整理や内容のチェックには表計算ソフトの利用が役立ちます。一般的に用いられることの多い MS-Excel の基本的な操作方法を解説します。

- 2. <データ解析の基礎> 収集したデータは統計解析に適したフォーマットに整え、入力の間違いなどのチェッ クを行う必要があります。MS-Excel を用いた統計解析の前処理について解説し、実例に基づいた演習を行い
- 3. < SPSS の基本操作> 統計解析ソフトである SPSS の基本的な操作方法を解説し、簡単な解析を実際に行 います。
- 4. <データ全体像の把握> 平均値、中央値、標準偏差等の基礎統計量に関する復習と、ヒストグラム・箱ひ げ図等の視覚的手法を用いたデータ全体像の把握の手順を解説し演習を行います。
- 5. <標本分布> 統計学でしばしば利用される標本分布としての正規分布・t 分布・2 項分布に関する解説をし ます。
- 6. 〈仮説検定〉 標本分布に基づいた仮説検定の基本とその手順の実際について解説します。
- 7. 〈データの正規性と等分散性〉 標本分布を利用した仮説検定の前提条件となるデータの正規性・等分散性 の確認とその結果に基づく検定法の選択に関して解説します。
- 8. < 平均値の差の検定 > Student の t 検定、Welch の t 検定、対応のあるデータの t 検定について解説・演習 を行います。
- 9. < ノンパラメトリック検定 > Mann-Whitney の U test 及び Wilcoxon signed-rank test について解説し、 実際にパラメトリックな検定法とどのように使い分けるかに関して演習を行います。
- 10. <適合度と独立性の検定 > クロス集計表、カイ2乗検定、フィッシャーの正確確率検定について解説すると ともに演習を行います。
- 11. <相関と回帰>及び小テスト相関係数、一次回帰直線に関する解説・演習を行います。また,平均値の比較 と独立性の検定に関する小テストを行います.
- 12. <多重比較の基礎(1)>多重比較の基本的な考え方と一元配置分散分析について解説・演習を行います。
- 13. 〈多重比較の基礎(2)〉 ノンパラメトリックな手法や反復測定を行った場合などの多重比較に関する解説・ 演習を行います。
- 14. <多重比較の基礎(3)> 二元配置分散分析が必要なケースの実際について解説・演習を行います。
- 15. <プレゼンテーションの基本> 統計解析を含む研究内容のプレゼンテーションの基本を解説します。 MS-PowerPoint の基本的な操作方法の解説も併せて行います。
- 16. <研究発表> 少人数のグループに分かれ、与えられたデータをもとに実際にプレゼンテーションを行って いただきます。

[キーワード] 標本分布、検定、多重比較、MS-Excel、SPSS、医学データ解析

- [教科書・参考書] 初等統計学(ポール G. ホーエル著;培風館)を指定参考図書とします。講義ではこの参考書の内容 に沿った解説は行いませんが、各回の講義内容に当てはまる部分に必ず目を通すようにしてください。小テストは この参考書の演習問題から出題します。
- [評価方法・基準] 第 11 回に行う小テストの成績、及び最終回に行うプレゼンテーションと質疑応答の内容で評価しま す。また、総講義回数の8割の出席(13回)を単位取得の前提条件とします。休講があった場合は、こちらから指 定する内容のレポートの提出をもって出席に代えます。
- [備考] 各回の講義内容は受講者全員の演習の達成度などを参考にし、適宜進行の速さ・順番などを変更することがあり ます。

T1L124001

授業科目名: 医用画像処理

科目英訳名: Medical Image Processing

担当教員 : 羽石 秀昭 : 2.0 単位

開講時限等: 3年後期金曜2限 授業コード: T1L124001 講義室 : 工 17 号棟 213 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 50

[授業概要] X線画像,MRI画像,核医学画像など医用画像を処理対象としながら,ディジタル画像処理の方法について 講義する.具体的には画像の数学的表現,画像の標本化と量子化,階調変換,直交変換,フィルタリング処理,セ グメンテーションなどである.医療におけるカラー画像処理についても講述する.

- [目的・目標] 一般目標: 医用画像処理といっても,その基本となる概念や手法は,いずれも普遍性の高いものがほとんどであり,その習得は受講者が将来様々な場面で応用可能なものと考える.この習得を目指す.到達目標: (1)知識・理解:デジタル画像に対する基本的な処理方法を説明できる.空間周波数と2次元フーリエ変換が理解できている.(2)思考・判断:処理方法を数学的表現とともに深く考えることができる.(3)関心・意欲:具体的事例を通して処理方法への関心が抱ける.
- [授業計画・授業内容] 以下のスケジュールで授業を進める.レポートを複数回課すので,それぞれ提出すること.なお,授業では主にパソコンを使い,プレゼンテーションソフトにより講義を進めるが,これは授業終了後担当教員のホームページからダウンロードできるようになっているため,特にカラーで示された資料あるいは高精細画像を確認しながらの復習の際,利用してほしい.
 - 1. イントロダクション,画像の標本化と量子化
 - 2. イメージングのモデル化, 階調変換
 - 3. 画像間の演算
 - 4. 補間処理
 - 5. 実空間フィルタリング
 - 6. 2次元フーリエ変換・2次元離散フーリエ変換
 - 7. 周波数空間でのフィルタリングイメージングシステムの特性(点像分布関数,周波数特性)
 - 8. 前半部分のレビューと中間テスト
 - 9. フーリエ変換以外の直交変換 (KL 変換, ウェーブレット)
 - 10. セグメンテーション
 - 11. 幾何学変換・レジストレーション
 - 12. 画質評価
 - 13. 医療におけるカラー画像処理 1
 - 14. 医療におけるカラー画像処理 2
 - 15. 後半部分のレビュー
 - 16. 期末テスト

[キーワード] 画像処理,画像変換,フーリエ変換,医用画像

[教科書・参考書] 参考書: ME 教科書シリーズ画像情報処理(I),鳥脇編著,コロナ社。

[評価方法・基準] 通常の出席状況 , レポート , 期末テスト等の結果を用いて総合的に評価する . おおよそ、出席およびレポートで 40 点、中間テストで 30 点、期末テストで 30 点とする。

[関連科目] 信号処理論,応用数学

[履修要件] 1 次元のフーリエ変換を習得済みであることが望ましい.

[備考] 授業中質問を随時受け付けるので積極的に質問してほしい. 個別の連絡がある場合は haneishi@faculty.chiba-u.jp にメールすること.

T1L125001

授業科目名: 医用情報ネットワーク

科目英訳名: Medical Telecommunication Network

担当教員 : 塩田 茂雄

単位数: 2.0 単位開講時限等: 3 年前期火曜 4 限授業コード: T1L125001講義室: 工 17 号棟 213 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 現代の社会生活や産業活動を支える情報通信ネットワークについて概説する.

[目的・目標] 目的:都市環境を支える情報通信ネットワークの全体像を把握するとともに,情報通信ネットワークを構成する各要素技術について理解する.目標:1.情報通信ネットワークの全体像を把握する.2.情報通信ネットワークがどのような要素技術(デジタル技術,インターネット技術,暗号・認証技術等)から構成されているかを知る.3.各要素技術の基礎を理解する.

- [授業計画・授業内容] 事前知識は不要.情報通信ネットワークの全体像を概説し,各要素技術について初歩から解説する.理解を深めるため,各授業において簡単な演習を行う場合がある.講義資料を配布するので,演習問題も参考にしながら適宜復習を行うこと.
 - 1. 概論
 - 2. 情報符号化(音楽,音声)
 - 3. 情報符号化(画像)
 - $4. \ \lambda y + D D P F + D + P (1)$
 - 5. ネットワークアーキテクチャー(2)
 - 6. 通信プロトコルの概念
 - 7. 物理層, データリンク層(1)
 - 8. データリンク層(2)
 - 9. インターネットプロトコル(1)
 - 10. インターネットプロトコル(2)
 - 11. インターネットプロトコル(3)
 - 12. トランスポートプロトコル(1)
 - 13. トランスポートプロトコル(2)
 - 14. DNS
 - 15. 暗号,認証技術
 - 16. 試験

[キーワード] 通信, インターネット, TCP/IP, 音声・画像符号化, 暗号・認証

[教科書・参考書] 教科書はなし、参考図書:「マスタリング TCP/IP(入門編)」竹下隆史他(オーム社)「インターネットプロトコル」阪田史郎他(情報処理学会 IT Text シリーズ)「インターネット技術のすべて」ジェームズ・F・クロセ(ピアソン・エデュケーション).

[評価方法・基準] 授業目標の到達度を最終試験により確認する.出席状況,演習,最終試験を総合的に評価し(出席・演習:25%,試験:75%),60点以上を合格とする.

[備考] 講義ノートは WEB 上で公開予定

T1L129001

授業科目名: 医用機械システム設計

科目英訳名: Medical Machine System Design

担当教員 : (小松 研一)

単位数: 2.0 単位開講時限等: 3 年後期木曜 4 限授業コード: T1L129001講義室: 工 17 号棟 111 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受入人数] 50名

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] MRI、X線CT、超音波診断装置などを中心に、最近の医療に不可欠な画像診断機器技術進展の過程と、動作原理、医療と画像機器技術の相互関係、診断画像の特徴と現段階での臨床的限界などを学ぶ。

[目的・目標] より安全で高度な医療を進めたいという要求と相俟って、画像診断機器技術が著しく進展してきた。医療に役立つための画像診断システムの開発思想、構成を学ぶことで、メディカルシステム工学に必要な知識を習得する。

- [授業計画・授業内容] MRI、X線CT、超音波診断装置、光計測装置など、現在主流となっている装置の基礎と臨床アプリケーションを学ぶ。
 - 1. 高度な医用画像処理の実情 コンピュータ支援診断 (CAD)
 - 2. 医療で何故診断画像が必要なのか (授業ガイダンス)。
 - 3. 周産器医療に欠かせない超音波診断システム
 - 4. 広がる超音波診断システムの役割

- 5. 臓器を重ならずに診れないか? CT の発明。
- 6. 高精細な4次元臓器観察への道を開いたヘリカル CT の発明。
- 7. 癌細胞を NMR 信号で判別できる? 画像にできるか MRI?
- 8. MRI 診断画像のアプリケーション
- 9. 発想力と独創性
- 10. 癌細胞を検出する PET の挑戦
- 11. 日本の保険医療制度と医用機器
- 12. 新春座談会:独創的医療機器開発と事業性
- 13. Roentgen 博士に学ぼう
- 14. 画像診断機器の今後の展望
- 15. 課題設定とレポート

[キーワード] X 線撮影装置、X 線 CT、MRI、超音波診断装置

[教科書・参考書] 特に指定はしない。より理解を深めたい学生のために ME 機器ハンドブック:(社)日本電子機械工業会編 コロナ社 CT と MRI - その原理と装置技術:森一生他 コロナ社 ISBN-10:4339072257 MDCT の基本パワーテキスト-CT の基礎からデュアルソース・320 列まで:陣崎雅弘他 メディカルサイエンスインターナショナル ISBN-10:895926524

[評価方法・基準] 期末試験、レポート提出および出席状況などにより総合的に判定する。

T1L130001

授業科目名: 専門英語 II

科目英訳名: Technical English II

担当教員 : (太田 真智子)

単位数 : 2.0 単位 開講時限等: 3 年後期火曜 3 限 授業コード: T1L130001 講義室 : 工 17 号棟 215 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[授業概要] この授業では、演習を通じて専門英語 I の学習を深める。

- [目的・目標] 最終目標専門英語 I の 15 回を通して築いた自律的学習基盤を盤石のものとし、生涯役立つ英語学習法を身につける。目標・論文を英語で書くための構成と表現を学ぶ。・何をどこにどのように書くべきかを具体的に学ぶことで英語の科学技術論文を読む力も養う。
- [授業計画・授業内容] 専門英語 I において専門英語力の第二階層を厚くし、第三階層を耕した。この成果を互いに持ち寄り、さらに学びを深める 15 回とする。"Science Research Writing: A Guide for Non-Native Speakers of English" を参考テキストとし、専門英語 I では割愛した事項を、演習も交えて、詳しく解説する。専門英語 II の目標を達成するには、受講生自身が自己の興味ある領域について積極的に調査する必要がある。おそらく小規模となるであろうクラスの利点を活かして互いが互いの学びの力となることを期待する。
 - 1. 手持ちの英語力を点検する
 - 2. 英語論文 Introduction を学ぶ 1
 - 3. 英語論文 Introduction を学ぶ 2
 - 4. 英語論文 Introduction を学ぶ 3
 - 5. 英語論文 Methodology を学ぶ 1
 - 6. 英語論文 Methodology を学ぶ 2
 - 7. 英語論文 Methodology を学ぶ 3
 - 8. 英語論文 Results を学ぶ 1
 - 9. 英語論文 Results を学ぶ 2
 - 10. 英語論文 Results を学ぶ 3
 - 11. 英語論文 Discussion/Conclusion を学ぶ 1
 - 12. 英語論文 Discussion/Conclusion を学ぶ 2
 - 13. 英語論文 Discussion/Conclusion を学ぶ 3

- 14. 英語論文 Abstract を学ぶ
- 15. 英語論文 Title を学ぶ今後の学習計画を立案する
- [キーワード] 理系英語, 学術英語, 英語論文, 学術英語共通基本語彙 (general academic vocabulary), 専門用語, 句読法 (punctuation), 句読記号 (punctuation marks), 英英辞典, 自律的学習
- [教科書・参考書] 参考テキスト: Science Research Writing: A Guide for Non-Native Speakers of English (ISBN: 978-1848163102) 注:当初、必携テキストと想定しましたが、部数確保が困難です。このシラバスを読んで興味を持った人は自力で入手しておくことを推奨します。
- [評価方法・基準] 学期末に大きな試験を行うのではなく、学期を通じて小さな課題を複数用意する。各課題には、その意図に応じて、活動点、理解点、またはその両方を設定し、成績根拠材料とする。活動 50%、理解 50%

[関連科目] 専門英語 I

[履修要件] 専門英語 I の単位を取得していること。

[備考] 成績根拠材料となる課題は大きく、1. 授業中に出題され、当該授業終了を提出期限とする課題 2. 授業中に出題され、指定授業冒頭を提出期限とする課題 3. 授業中に出題され、Moodle 経由で指定期限までに提出する課題 4. Moodle 経由で出題され、Moodle 経由で指定期限までに提出する課題に分かれる。期限内に提出された課題には、設定された活動点、理解点、またはその両方が与えられる。【提出期限を過ぎて課題を提出するには、関係する授業の公欠届が必要である】

T1L131001

授業科目名: 医用支援機器

科目英訳名: Therapeutic Medical Devices

担当教員 : 中村 亮一

単位数: 2.0 単位開講時限等: 4 年前期月曜 4 限授業コード: T1L131001講義室: 工 17 号棟 215 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

- [授業概要] 現在の病院において必要不可欠となった医用支援機器について解説する.特に手術室において治療に使用する機器を中心に,一般 ME 機器からナビゲーション手術装置・手術ロボット等のコンピュータ外科機器について,製品から研究開発を含め解説する.また開発・実用化・事業化の現状についても解説する.
- [目的・目標] (1)ME 機器の動作原理・効用・適応を理解する.(2) コンピュータ外科システムの効用・適応・開発動向を 理解する(3) 医用支援機器の安全規格について理解する(4) 医用支援機器の一般的な実用化・事業化プロセスを理 解する.(5) 本邦の医用支援機器産業の現状を理解し展望を考察する.

- 1. 導入:外科治療における医用支援機器
- 2. ME 治療機器 I: 電磁気治療機器: 電気メス,ペースメーカ (1)
- 3. ME 治療機器 II:電磁気治療機器:ペースメーカ(2),除細動器
- 4. ME 治療機器 III: 光学治療支援機器: レーザ手術装置, 内視鏡
- 5. ME 治療機器 IV: 超音波治療機器: 超音波吸引装置, 超音波凝固切開装置
- 6. ME 治療機器 V:熱治療機器:冷凍治療器,ハイパーサーミア
- 7. ME 治療機器 VI:機械的治療機器:結石砕石装置,輸液ポンプ,心血管系インターベンション
- 8. コンピュータ外科学, ナビゲーション医療機器, 中間試験
- 9. コンピュータ外科機器 I:手術ロボット・マニピュレータ
- 10. コンピュータ外科機器 II: 手術ナビゲーション
- 11. コンピュータ外科機器 III: モデルを用いた CAS システム
- 12. 医用支援機器と薬事法 (1): 医療機器の製造販売と承認
- 13. 医用支援機器と薬事法 (2): GLP, GCP と安全評価
- 14. 医用支援機器と薬事法(3):表示・添付文書,販売後安全対策
- 15. 医用支援機器と薬事法(4):販売後安全対策,再審査・再評価

16. 医用支援機器と薬事法(5): レギュラトリーサイエンス

[キーワード] 低侵襲手術, 医療機器, ME, コンピュータ外科学, 手術ロボット, 手術ナビゲーション, 薬事法

[教科書・参考書] 教科書:配付資料 参考書:臨床工学講座 医用治療機器 篠原一彦編 医歯薬出版 , カラー図解よくわかる改正薬事法 医療機器編 薬事日報社

[評価方法・基準] 中間試験 (30%) , 期末レポート (70%) および出席状況にて評価を行う. 中間試験では目標 (1) の知識到達度について , 期末レポートでは目標 (2) ∞ の知識到達度および応用について評価する .

T1L132001

授業科目名: 生体機能材料

科目英訳名: Biodynamic Material

担当教員 : 大須賀 敏明

単位数 : 2.0 単位 開講時限等: 4 年前期金曜 2 限 授業コード: T1L132001 講義室 : エ 17 号棟 112 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 45名

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 人工血管や人工骨の開発に必要な メディカル工学のための材料力学、流体力学を解説する。分子のレベルでも、消毒剤、抗癌剤、抗生物質、免疫機能を化学結合の基本から解説する。

[目的・目標] 生体適合性の高い樹脂、ビニルの化学組成とその測定方法を理解する。人工臓器の設計に要請される材料を化学の体系から理解する。

[授業計画・授業内容] 以下の15の事項について解説する

- 1. ボーアの原子軌道
- 2. 物質の波動性と化学結合
- 3. 化学結合の基礎:共有結合と水素結合
- 4. 薬剤の毒性と免疫
- 5. 抗生物質と抗癌剤
- 6. 材料力学の基礎
- 7. 材料力学の生体材料設計への応用1:硬材料
- 8. 材料力学の生体材料設計への応用2:柔軟材料
- 9. 流体力学の基礎1:膜を浸透する流れ
- 10. 流体力学の基礎2:毛細血管の層流
- 11. 流体力学の基礎3:拍動による脈流
- 12. 生体の流れを測定する MRI と超音波
- 13. 光散乱による生体適合性微粒子の測定
- 14. 生体組織の測定に用いる赤外線吸収スペクトル
- 15. 樹脂の成分分析に用いる赤外線吸収スペクトル

[教科書・参考書] プリントを配布する

[評価方法・基準] 2回の試験とレポートによる

T1L133101

授業科目名: 応用電磁工学 (旧名称「医用電磁工学」)

科目英訳名: Applied Electromagnetics

担当教員 : 伊藤 公一

単位数: 2.0 単位開講時限等: 3 年前期月曜 5 限授業コード: T1L133101講義室: 工 17 号棟 215 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 最初に,本講義を学ぶために必要な電磁気学の重要なポイントを復習する。次に,通信および医療応用を含めた様々な電波応用について,それらの基礎および具体例を解説する。続いて,電磁波が電子機器あるいは生体組織に与える影響,すなわち電磁環境問題について説明する。

[目的・目標] まず,電磁気学の重要なポイントを理解した上で,通信や放送,医療などの様々な用途に電磁波(電波)がどのように用いられているかを基礎から具体例まで学ぶ。さらに,社会問題にもなっている電磁環境問題について正しく理解する。

[授業計画・授業内容]

- 1. イントロダクション (講義の主旨,進め方,成績評価方法など)
- 2. 電波応用の種類(情報伝送,探査・観測,エネルギー利用)
- 3. 電磁気学の重要なポイント(1)
- 4. 電磁気学の重要なポイント (2)
- 5. 電磁気学の重要なポイント(3)
- 6. 電波応用の基礎と具体例 (通信1)
- 7. 電波応用の基礎と具体例 (通信2)
- 8. 電波応用の基礎と具体例(放送)
- 9. 情報伝送の基本技術
- 10. 電波応用の基礎と具体例(工業応用)
- 11. 電波応用の基礎と具体例 (医療応用:診断)
- 12. 電波応用の基礎と具体例 (医療応用:治療)
- 13. 電磁環境問題 (電子機器への影響)
- 14. 電磁環境問題 (生体組織への影響)
- 15. 講義のまとめ/期末試験

[キーワード] 電磁界,電磁波,電波応用,医療応用,電磁環境問題

[教科書・参考書] 必要に応じて推薦する。

[評価方法・基準] 期末試験,レポートの成績,講義への出欠状況・態度等を総合的に評価する。

T1L134001

授業科目名: 診断計測工学

科目英訳名: Diagnostic Measurement Engineering

担当教員 : 岩坂 正和

単位数: 2.0 単位開講時限等: 4 年前期水曜 3 限授業コード: T1L134001講義室: 工 17 号棟 111 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[授業概要] 電子的技術を用いて人体および生物の形態と機能計測ための原理や技術について説明する。特に,光、電磁場と生体物質の相互作用を介した計測法,近赤外線へモグロビン酸素利用率計測機などの特性計測技術について触れる。また,バイオテクノロジー技術に用いられる機能物質材料の特性、バイオチップおよび細胞計測モジュールに活用されている最新の光学計測技術と材料(プラズモニクスおよびフォトニクス)について学ぶ。

[目的・目標] 医工学で用いられている機能材料およびデバイスの動作原理と能力について理解する。

- 1. オリエンテェーション・総論
- 2. 固体電子デバイス 1
- 3. 固体電子デバイス 2 生体計測例
- 4. 固体磁気デバイス 1

- 5. 固体磁気デバイス 2 生体計測例
- 6. 固体光デバイス 1
- 7. 固体光デバイス 2 生体計測例
- 8. **ソフトマテリアル**1
- 9. ソフトマテリアル2
- 10. マイクロ流体デバイス バイオチップ
- 11. バイオセンサ応用
- 12. テスト
- 13. 予備日
- 14. 予備日
- 15. 予備日

[教科書・参考書] 後日提示する

[評価方法・基準] 出席・レポートなど

T1L135001

授業科目名: メディカルシステム実験 I

科目英訳名: Experiment of Biomedical Engineering I

担当教員 : 中口 俊哉, 川村 和也, 大西 峻

単位数 : 3.0 単位 開講時限等: 3 年前期金曜 3,4,5 限 授業コード: T1L135001, T1L135002, 講義室 : 工 5 号棟 104 教室

T1L135003

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 実験・実技

[受入人数] 40名程度

- [授業概要] 2年次までの講義をもとに診断装置や計測装置の主な要素となるアナログ回路,デジタル回路,デジタル信号処理について実験を行う.アナログ回路では,増幅器などを作成,理論との比較を行う.デジタル回路では,制御に必要となる組み合わせ回路と順序回路を作成し動作の確認を行う.デジタル信号処理では,ノイズ除去,ピーク検出,FFTについてのプログラムを作成し,実際の信号の処理を行う.
- [目的・目標] 医療現場で使用される診断装置について,必要な知識を実験を通じて理解を深めることを目標としている.特に,増幅器を中心としたアナログ回路,計測装置のコントロールを行うデジタル回路,得られた生体信号の処理を行うデジタル信号処理について実験を行い,理解を深める.さらに,生体計測用実験装置 BioPac を用いて,実際の計測を行い,生体信号についての理解を深める.
- [授業計画・授業内容] 生体計測に使用される機器の重要な構成要素,アナログ回路,デジタル回路,デジタル信号処理について実験を行う。 1)BioPac を用いた生体計測 2)アナログ回路 オペアンプIC を用いて,増幅回路などを作成し,理論との比較を行う。 3)デジタル回路 74シリーズIC を用いて,組合回路や順序回路を作成し,動作を確認する。 4)デジタル信号処理 ノイズ除去,ピーク検出,FFTのプログラムを作成し,信号の処理を行う。 実験は4班に分けて行う。以下に一つの班の実験スケジュールの例をあげる。 また,予習として実験のテキストを読み,実験に必要な知識を講義の参考書やノートで確認を行うこと。
 - 1. 実験ガイダンス レポートの書き方1
 - 2. BioPac を用いた生体計測 1
 - 3. BioPac **を用いた生体計測 2**
 - 4. BioPac を用いた生体計測3
 - 5. アナログ回路 1
 - 6. アナログ回路 2
 - 7. アナログ回路 3
 - 8. レポートの書き方2
 - 9. デジタル回路 1
 - 10. デジタル回路 2

- 11. デジタル回路3
- 12. デジタル信号処理 1
- 13. デジタル信号処理 2
- 14. デジタル信号処理 3
- 15. 予備日

[キーワード] 生体計測, 増幅回路, カウンタ, ノイズ消去, 高速フーリエ変換

[教科書・参考書] 実験書については,メディカルシステム工学科ホームページに公開する.

[評価方法・基準] レポートを提出させ,採点し,合計点60点以上を合格とする.

[関連科目]回路理論 I,電子回路,プログラミング演習,アルゴリズムとデータ構造,デジタル回路

T1L136001

授業科目名: メディカルシステム実験 II

科目英訳名: Experiment of Biomedical Engineering II

担当教員 : 中口 俊哉

単位数 : 3.0 単位 開講時限等: 3 年後期金曜 3,4,5 限 授業コード: T1L136001, T1L136002, 講義室 : 工 2 号棟 102 教室

T1L136003

科目区分

2011 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 実験・実習

[受入人数] 40 名程度

[授業概要] メディカルシステム工学科及びフロンティアメディカル工学研究開発センターの教員のそれぞれの研究室を,4-5名程度の少人数の班に分かれて,毎週訪問し,研究内容を学ぶと共に研究の補助を行う。

[目的・目標] 医工学研究の前線に触れることにより,広範にわたる医工学の知識を吸収出来るだけでなく,卒業研究を 踏まえて研究に対するモチベーションを高めることを目的とする.

[授業計画・授業内容] 班の編制,実験内容については,初回に行うオリエンテーションまでに発表する。予習として, 実験のテキストを読み,実験に必要な知識を講義の参考書やノートで確認を行うこと.

[教科書・参考書] 実験書については,メディカルシステム工学科ホームページに公開する.

[評価方法・基準] 各研究室を訪問した後にレポートを提出し、各教員はレポートの評価を行う。

T1L137001

授業科目名: 卒業研究

科目英訳名: Undergraduate Research

担当教員 : 各教員 単位数 : 8.0 単位 開講時限等: 4 年通期集中 授業コード: T1L137001 講義室 : 各研究室

科目区分

2010 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 演習・実験

[目的・目標] 三年までに学習した基礎力を発展することを目的として、一年間の研究を遂行する。研究課題の詳細な立案を学生が行い、研究によって生じる諸問題も学生が自らの力で解決する。研究の遂行中は、学生は担当教員に状況を随時報告して、研究の進行を評価しながら、計画の修正と展開を行う。学生は担当教員と密接に議論しながら、研究の到達度を高め、社会に貢献できる高い応用性を修得することを目標とする。

[授業計画・授業内容] 詳細な研究計画は配属された研究室において行われる。研究経過は定期的に研究室で発表し、研究室の教員と学生で十分な議論を行い、研究の意義と計画の妥当性について担当教員から判断を受けなくてはならない。一年間の研究結果は卒業論文として提出し、メディカルシステム工学科卒業研究発表会で発表しなければならない。

1. 卒業研究のテーマについて、その研究を必要とする社会の技術的背景と得られた研究成果が社会に波及する効果について考察し、研究の社会的意義を十分に把握した卒業論文を作成する。

- 2. 卒業研究の内容を、スライド、ポスター、配布プリントを用いて、口頭発表し、十分にわかりやすい発表であるかを聞く人から評価を受ける。
- 3. 自分が採用した研究方法が他の方法に比較して優れた方法であったことを、複数の評価方法によって定性的、 定量的に説明する訓練を積み上げ、研究方法が第三者からも正当である評価を受けられるようにする。
- 4. 卒業研究の遂行状況を随時評価して、将来の研究課題を設定して実行することができる。
- 5. 研究上必要な実験を列挙して、各々の必要性を十分に吟味し、実際に行う実験を最小限に絞込んで、効率の良い研究を行う。
- 6. 研究にあたって各自が検討した課題、作業の内容、将来の計画に関する 技術文書、検討文書、企画文書を 作成できるようにする。
- 7. 卒業研究に関係する国内国外の英文の文献を自由に読みこなすことができ、自分の卒業研究の内容を、英文で表現できるようにする。

[評価方法・基準] 卒業研究発表会における研究内容の発表と提出した卒業論文の内容及び、履修態度によって評価する [履修要件] 専門科目 102 単位、普遍科目 24 単位 以上を修得していること

T1L138001

授業科目名: 臨床医学概論

〔千葉工大開放科目、専門科目共通化科目〕

科目英訳名: Introduction to Clinical Practice for Young Engineers

担当教員 : 五十嵐 辰男

単位数 : 2.0 単位 開講時限等: 1 年後期木曜 5 限 授業コード: T1L138001 講義室 : 工 17 号棟 111 教室

科目区分

2013 年入学生: 専門選択必修 F20 (T1K4:メディカルシステム工学科 (先進科学) , T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 40

[受講対象] 自学部他学科生 履修可, 他学部生 履修可

[授業概要] 日常診療で代表的な疾病を概説し、医療機器を中心に診療体系を解説する。

[目的・目標] 代表的疾病や外傷を網羅的に理解し、工学的な視点から診療活動を支援することで国民の健康・福祉に貢献できる能力を習得する。

[授業計画・授業内容] 臨床科で担当する疾患や診療体系を基本として、病態と診療における工学機器に要求される機能と実際の貢献を述べる。

- 1. 医療機器と疾病
- 2. 腎・泌尿器 I
- 3. 先端手術と治療機器
- 4. 呼吸器・循環器
- 5. 代謝・内分泌 II
- 6. 腎・泌尿器 II
- 7. 代謝・内分泌 I
- 8. 輸血、臨床検査
- 9. 麻酔
- 10. 救急・蘇生
- 11. 精神·神経
- 12. 頭·頸部 I
- 13. 頭・頸部 II
- 14. 感染症
- 15. 試験

[キーワード] 透析装置、人工弁、人工心肺、人工呼吸器、ペースメーカー、人工膵臓、電動車いす

[教科書・参考書] プリントを配布

[評価方法・基準] 毎回レポートを提出する。全授業終了後試験をおこなう。疾病の病理学的な理解度や診療に医療機器の果たす役割を患者さんや医療スタッフの視点から考察する能力を評価する。

[関連科目] 倫理学、内科診断学、外科学総論、病理学

T1L139001

授業科目名: 医用機器産業概論 〔千葉工大開放科目、専門科目共通化科目〕

科目英訳名: Introduction of Medical and Welfare Industries

担当教員 : 伊藤 公一

単位数: 2.0 単位開講時限等: 3 年後期水曜 5 限授業コード: T1L139001講義室: 工 17 号棟 112 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 50 人

[受講対象] 自学部他学科生 履修可

[目的・目標] 医療機器産業界における最新の技術動向を広く理解する.

[授業計画・授業内容] 広く医工学に関して産業界で活躍している研究者・技術者の協力を得て,毎回,最先端技術や医療機器の実例などを紹介する.

- 1. オリエンテーション
- 2. 医療機器の審査
- 3. 休講(台風のため)
- 4. 医療機器の研究開発
- 5. 発明と知財
- 6. 医用超音波診断装置の開発
- 7. 内視鏡の研究開発
- 8. モニターの話
- 9. 日本の医療産業と医療の国際化
- 10. 眼科診療における測定装置
- 11. 医療用・介護用ベッドの開発
- 12. 日本の医療保険制度と医療機器の価値評価とは
- 13. 肌画像の解析
- 14. X線フラットパネルディテクターの開発
- 15. MRI計測と研究/全体のまとめ

[評価方法・基準] 毎週の講義の最後の 10 分を利用して,レポートを作成・提出する.出席点とレポート点により評価 する.

[履修要件] 特にない

T1L141001

授業科目名: 医学研究概論

科目英訳名: Introduction to Clinical and Medical Research

担当教員 : 五十嵐 辰男

単位数: 2.0 単位開講時限等: 4 年前期金曜 4 限授業コード: T1L141001講義室: 工 17 号棟 211 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 40 名

[受講対象] 自学部他学科生 履修可

[授業概要] 医学は人体を対象とした「不完全な科学」であり、医学研究は生命倫理に基づき、科学的に行われる。現在の医療の成立過程で確立された研究成果を概説し、医療における工学者の果たす役割と方向性を展望する。

[目的・目標] 現在、生命科学研究や臨床検査の現場で日常的に用いられている手法の原理と実際を説明することができる。様々な生命科学研究の意義を理解し、生物学系の論文内容を読解することができる。

[授業計画・授業内容]

1. 医科学と生命倫理

2. Evidence Based Medicine (EBM) と医用統計

3. Qiality of Life (QOL) I:ハンデをもった方の衣食住

4. Qiality of Life (QOL) II: 排泄について

5. 癌の生物学 I: 癌と遺伝子、発癌 6. 癌の生物学 II: 癌の増殖と転移

7. 癌治療 I: 局所療法 8. 癌治療 II: 全身療法

9. 炎症と免疫 I: 炎症とは?

10. 炎症と免疫 II: 古典的な免疫の解説

11. 画像診断の果たした役割12. 低侵襲治療 I: 良性疾患

13. 低侵襲治療 II:悪性疾患

14. 先端的治療

15. 医療制度と医療経済

16. 試験

[キーワード] 生命倫理、臨床医学、基礎医学、画像診断、医用統計

[教科書・参考書] 教科書は特に定めない。スライド、プリントをもちいて授業を行う。

[評価方法・基準] レポートおよび総合テストで評価。

[関連科目] 生命倫理学、臨床医学、基礎医学、画像診断学、統計学

T1L142001

授業科目名: ロボット工学(メディカル)

科目英訳名: Robotics 担当教員 : 並木 明夫

単位数 : 2.0 単位 開講時限等: 3 年前期金曜 4.5 限隔週 1.3

授業コード: T1L142001, T1L142002 講義室 : エ 17 号棟 214 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[授業概要] 一般知識としてのロボットの歴史を説明するとともに専門知識としてのロボットの基礎としての運動学を重点的に説明する.また、最先端のロボット技術の現状についてビデオなどで紹介する.

[目的・目標] ロボットの構成法,力学解析,知能化などの基本を習得し,ロボットの基礎と応用の概論的知見を養うことを目的とする.

	C C C C C C C C C C C C C C C C C C C							
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み				
1	ロボットの機構を理解し,構造を読み取ることができる。	1, 2, 16	期末試験	20 %				
2	ロボットの運動学の計算ができる。	3, 4, 5, 6	期末試験	20 %				
3	ロボットの動力学の計算ができる。	7, 8, 9	期末試験	20 %				
4	ロボットの可操作性の計算ができる。	10, 11	期末試験	20 %				
5	ロボットの位置制御系が設計できる。	12, 13, 14	期末試験	20 %				

- 1. ロボット研究の概要
- 2. ロボットの機構
- 3. 運動学1

- 4. 運動学2
- 5. 運動学3
- 6. 運動学4
- 7. 動力学 1
- 8. 動力学2
- 9. 動力学3
- 10. 可操作性 1
- 11. 可操作性 2
- 12. 位置制御 1
- 13. 位置制御 2
- 14. 位置制御3
- 15. 試験
- 16. 先端ロボット研究の現状(見学)

[キーワード] ロボット、運動学、動力学,制御

[教科書・参考書] ロボット制御基礎論, 吉川 恒夫, コロナ社

[評価方法・基準] 試験 [履修要件] 特になし

T1L143001

授業科目名: パターン認識(メディカル)(2013年度 開講なし)

科目英訳名: Pattern Recognition

担当教員 : 津村 徳道

単位数: 2.0 単位開講時限等: 3 年前期金曜 2 限授業コード: T1L143001講義室: 工 2 号棟 103 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[授業概要] 情報工学の幅広い分野で必要とされ,すでに多くの技法が実用化されているパターン認識の基礎理論を解説 する.

[目的・目標] パターン認識の過程と特徴抽出の大切さを学ぶ、パターン認識に関する数学的な手順を含めた基礎知識を 習得する、統計的パターン認識の考え方と手法を理解する、学習の概念と学習アルゴリズムを学ぶ、特徴空間、 特徴分析、特徴変換など特徴の取り扱い方を学ぶ、パターン認識の実際問題を理解し、応用力を身につける、

- 1. パターン認識とは
- 2. 特徴ベクトルと特徴空間 (1)
- 3. 特徴ベクトルと特徴空間 (2)
- 4. 学習と識別関数 (1)
- 5. 学習と識別関数 (2)
- 6. 学習と識別関数 (3)
- 7. ニューラルネットワークとの関係
- 8. 識別部の設計(1)
- 9. 識別部の設計(2)
- 10. 特徴の評価とベイズ誤り確率(1)
- 11. 特徴の評価とベイズ誤り確率(2)
- 12. 特徴の評価とベイズ誤り確率(3)
- 13. 特徴空間の変換
- 14. 部分空間法

15. まとめと今後の展開

[キーワード] 統計的パターン認識,ベイズ識別,学習,ニューラルネットワーク

[教科書・参考書] 要購入: 教科書:わかりやすいパターン認識,オーム社,2800円,ISBN4-274-1349-1

[評価方法・基準] 出席状況, 当日レポート, 当日外レポートなどを総合して評価する

T1L146001

授業科目名: メディカル理数特別セミナー IV

科目英訳名: Special Seminar in Medical Sciences IV

担当教員 : 各教員

単位数 : 2.0 単位 開講時限等: 4 年通期集中

授業コード: T1L146001 講義室 :

科目区分

2010 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・実習

[受入人数] 若干名

[受講対象] 「理数大好き応援プロジェクト」に選抜された者

[授業概要] 本科目は、「理数大好き応援プロジェクト」に選抜された者を対象に、理数に優れ意欲ある学生を、さらに動機付け、得意な能力(研究力)を一層伸ばすため、低学年次から課題研究を奨励し、科学技術への関心を維持・発展させるための取り組みとして実施される特別セミナーである。このため、選抜者は、希望の研究室に配属され、学習、研究のためのふさわしい環境が与えられます。

[目的・目標] メディカル理数特別セミナー III で習得した内容を基に,研究を進めていくために必要な事柄を習得する.配属された研究室の担当教員から研究を進める上で必要な知識の講義を受け,研究内容を理解する.また講義以外にも演習、プログラム作成、実験参加などの実践的課題を与えられ,それらの内容をより深く理解し,実験等への参加・計画・実施し、結果を発表する。

[授業計画・授業内容] 学生の要望に応じて授業の内容は適宜定める.通年で30回の授業を確保する.

[教科書・参考書] 各担当教員において、ふさわしい教科書、参考書を適宜使用する。

[評価方法・基準] 各担当教員において、特別セミナーの出席数、受講態度、並びにレポート課題の実施状況などを総合 化して、評価する。

[関連科目] 関連する研究分野の基礎科目、専門基礎科目、専門科目

[履修要件] 「理数大好き応援プロジェクト」に選抜された者であること。

T1L147001

授業科目名: 計測工学

科目英訳名: Measurement Engineering

担当教員 : 山本 悦治

 単位数
 : 2.0 単位
 開講時限等: 3 年後期水曜 3 限

 授業コード: T1L147001
 講義室
 : 工 15 号棟 109 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 50名

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 生体計測を中心として、その基礎を学び、今後出現すると予想される新しい計測法への対応能力を養成する [目的・目標] 生体計測の基礎を学ぶ

- 1. 生体計測とは 単位 誤差 精度
- 2. 生体電気現象測定のための電極
- 3. 生体磁気

- 4. 運動計測 直接計測
- 5. 運動計計測(間接計測)と力の計測
- 6. 温度計測
- 7. 発汗センサ 生体化学量の計測 1
- 8. 生体の化学量の計測 2
- 9. 生体機能検査用機器 心電図、脳波、筋電図
- 10. 呼吸機能検査装置
- 11. 生体圧力の計測 血圧計,脳圧計
- 12. 流量計測 超音波流量計 大血管系の流速、流量計測
- 13. 流量計測 末梢の筋血流、皮膚血流の計測
- 14. 手術機器
- 15. 治療機器 ペースメーカ

[キーワード] 生体計測 センサ トラスデューサ

[教科書・参考書] 教科書 医用機器 I (コロナ社) 田村他参考書 生体計測とセンサ (コロナ社) 戸川達男 [評価方法・基準] 定期試験、出席率、授業態度で総合的に評価する。単位を取得するためには、70 %以上の出席率が必要である。

[関連科目] 電子回路 電磁気学 生体力学

[履修要件] 電子回路

[備考] 平成21年度まで開講していた「医用応用ナノテクノロジー」の読替科目である。

T1L148001

授業科目名: 通信工学概論

科目英訳名: Introduction to Network Engineering

担当教員 : 高橋 応明

単位数: 2.0 単位開講時限等: 3,4 年前期月曜 3 限授業コード: T1L148001講義室: エ 17 号棟 212 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科) **2011** 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 40 人

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[授業概要] 最新の電子機器、医療診断機器では通信機能は不可欠である。本講義では、無線通信に内容を絞り、その原理から応用まで幅広く学習する。

[目的・目標] 学習を通じて、無線通信の基礎を学習し、適切に医療機器などへの応用を思考できる知識を習得すること を目標とする。

- 1. 身の周りの通信について
- 2. 電磁波とは
- 3. 波動方程式
- 4. 平面波
- 5. 伝送線路
- 6. 導波管
- 7. 電磁波の放射 1
- 8. 電磁波の放射 2
- 9. 線状アンテナ
- 10. 板状アンテナ

- 11. アレイアンテナ1
- 12. アレイアンテナ 2
- 13. 電波伝搬
- 14. 電波応用1
- 15. 電波応用 2

[キーワード] 無線通信、電波、アンテナ

[教科書・参考書] "電磁波工学入門", 高橋応明著, 数理工学社, ISBN 978-4-901683-83-8

[評価方法・基準] 上記目標の達成度を試験結果により評価する。

[関連科目] 応用電磁工学 (旧名称「医用電磁工学」)(p. メデ 27 T1L133101)

T1L149001

授業科目名: 電子デバイス工学(旧名称「医用電子回路」)

科目英訳名: Electric Device Engineering

担当教員 : (和崎 浩幸)

単位数 : 2.0 単位 開講時限等: 3 年後期月曜 4 限 授業コード: T1L149001 講義室 : 工 17 号棟 214 教室

科目区分

2011 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 30

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[目的・目標] 医用工学や生体計測では、電子回路を用いた測定が必要となる。そこで本講では、医用工学のための電子 回路に関する基礎的知識の習得を目的とする。

[授業計画・授業内容] 授業は、教科書を用いて行う。

- 1. ガイダンス。本講の進め方、目的などを明らかにするとともに、授業の評価方法について説明する。
- 2. 医用生体工学の概要。生体計測の特徴や、生体計測における電気・電子的な測定について解説を行うことで、本講の背景についての理解を図る。
- 3. 信号源としてみた生体の特徴。生体は信号源インピーダンスの高い電圧源としての性格が強く、また信号レベルが低いという特徴を有する。信号源としてみた生体の特徴を通して、医用電子回路に要求される性能について解説する。また、雑音対策についても言及する。
- 4. 演算増幅回路の基礎。医用電子計測のための回路では演算増幅回路が重要である。そこで、演算増幅回路における、負帰還や仮想短絡といった回路上の概念について説明を行う。
- 5. 演算増幅回路の実際-1。演算増幅回路の実際として、反転増幅回路, 非反転増幅回路, 差動増幅回路, インスツルメンテーションアンプ、及びこれらの応用回路について、その動作原理を説明する。
- 6. 演算增幅回路-2。同上。
- 7. 演算增幅回路-3。同上。
- 8. 電源, 定電圧回路。生体計測用の電子回路では、電源回路の性能も重要である。また、差動増幅回路を組み込んだ定電圧回路は、演算増幅機の応用事例の1つでもある。そこで、電源回路の動作について解説するとともに、グランドの布設方法など、電子回路の実装についても解説する。
- 9. AD 変換。生体信号は、通常計算機の取り込むんだ後、ソフトウェア的に生体情報の抽出を行う。従って、アナログ回路によって取り扱われてきた生体信号を、計算機に向けてデジタル化するための回路である AD 変換は重要であることから解説を行う。
- 10. 電極。生体信号を取り出すための典型的なセンサである生体用電極について説明を行う。
- 11. センサ-1。温度, 変位, 圧力, pH 等といった生体由来の物理・化学量を電気信号に変換するために、様々な変換素子、いわゆるセンサが開発されている。どのようなセンタがあるのか、その動作原理を踏まえつつ解説を行う。
- 12. センサ-2。同上
- 13. 医用画像的測定手法。画像的手法による生体計測は、その非接触性や画像情報が得られるなど、手法としての長所を有する。そこで電子計測との関係を踏まえつつ、医用画像的測定手法について解説を行う。

- 14. 安全対策。電気・電子的な測定手法を生体に適用する際に必要となる、生体に対する電気的安全性やその対策について講義を行う。
- 15. 総括と期末試験。授業相互の関連を総括するとともに、習得が必要とされる内容について試験を行い、達成度を評価する。

[キーワード] 回路理論,電子回路,医用電子機器

[教科書・参考書] 臨床検査学講座 医用工学概論嶋津 英昭 他, 医歯薬出版 (株), ISBN:4-263-22893-6 2,800 円 [評価方法・基準] 試験成績及び出席状況より判定する。

[備考] 電磁気学, 回路理論, 電子回路理論の習得を前提とする。平成 21 年度まで開講していた「医用電子回路」の読替 科目である。

T1L151001

授業科目名: プログラミング基礎

科目英訳名: Fundamentals of Computer Programming

担当教員 : 菅 幹生

単位数 : 2.0 単位 開講時限等: 2 年前期火曜 4 限

授業コード: T1L151001 講義室 : 総 A4F 情報処理演習室 2

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受入人数] 55

[受講対象] 自学部他学科生 履修可

[授業概要] プログラミング言語を初めて学ぶ人を対象としてプログラムの基礎を C 言語を用いて講義する.

[目的・目標] プログラム言語 (C 言語) を知る . 広く普及しているプログラム言語である C 言語の基礎を理解し , C 言語を読み書きできるようにする .

[授業計画・授業内容] C 言語の基本的な文法を習得できるように,具体的な例文を挙げながら説明をする.本講義と並行して開講されるプログラミング特講 I で必要な内容についても解説する.

- 1. C 言語の説明.簡単なプログラムの説明. 必要な準備学習 教科書の第1章読んで予習しておくこと
- 2. 変数とデータ型 (char, int, float, double), 配列 (数値列,文字列,初期化方法) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 3. 演算子 (=, +, -, *, /, %, ++, -, <=, >=, ==, !=, ! &&, ||, キャスト, sizeof) 必要な準備学習 これまで の授業にて配布した授業資料等を読んで復習しておくこと
- 4. 制御構造(if、switch) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 5. 制御構造 (for, while, do-while, breake, continue) 必要な準備学習 これまでの授業にて配布した授業資料 等を読んで復習しておくこと
- 6. コンソール入出力 (getchar(), gets(), printf(), scanf()) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 7. 関数(基本形,引数と戻り値) 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 8. 関数(ローカル変数とグローバル変数,記憶クラス) 必要な準備学習 これまでの授業にて配布した授業 資料等を読んで復習しておくこと
- 9. ポインタの初歩 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 10. 配列とポインタ 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 11. 関数とポインタ 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 12. 構造体と共用体 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 13. プリプロセッサによる前処理 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 14. ライブラリ関数 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 15. ファイル入出力 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 16. 試験 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと

[キーワード] プログラミング言語、C 言語

[教科書・参考書] 新訂 新 C 言語入門 ビギナー編 , 著者・編者:林 晴比古 , 出版社:ソフトバンククリエイティブ , ISBN コード:4797325615 , 参考書 書名:C 言語入門 ASCII SOFTWARE SCIENCE Language (改訂第 3 版) , 著者:Les Hancock, 他 , 出版社: アスキー , ISBN: 4756102700

[評価方法・基準] 上記目標の達成度を評価する.評価の配分は,期末テスト 80 %,小テスト・レポート・出席態度 20 %とする.総合して60点以上を単位取得の達成度に達したものとみなす。

[関連科目] プログラミング特講 I , データ構造とアルゴリズム , メディカルシステム実験 I , メディカルシステム実験 III , メディカルシステム実験 III

T1L152001

授業科目名: プログラミング特講 I

科目英訳名: Advanced Computer Programming I

担当教員 : 菅 幹生

単位数 : 2.0 単位 **開講時限等**: 2 年前期火曜 5 限

授業コード:T1L152001 講義室 : 総 A4F 情報処理演習室 2

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受入人数] 55

[受講対象] 自学部他学科生 履修可

[授業概要] プログラミング言語を初めて学ぶ人を対象としてプログラムの基礎を C 言語を用いて講義する . 第 4 セメスタに開講するデータ構造とアルゴリズムと併せて学習することにより , 基本的なアルゴリズムを作成できるようにする .

[目的・目標] プログラム言語 (C 言語) を知る.広く普及しているプログラム言語である C 言語の基礎理解し,計算機を使用して頭の中の手順(アルゴリズム)をプログラムで表現できるようにする.

[授業計画・授業内容] Linux 環境下での基本的操作方法の習得から始め, C 言語の文法を演習を通して着実に身につけるようにする。基本的アルゴリズムを計算機を使って実行できるように講義する。

- 1. 演習で利用する計算機の使い方の説明、UNIX コマンド、エディタ、C 言語の説明
- 2. C プログラムの書き方。コンパイルの手順とデバッグ方法(エラーメッセージと警告メッセージの読み方)。 必要な準備学習 第1回目の授業にて配布した授業資料を読んでおくこと
- 3. 変数宣言や基本的な演算子を含んだ簡単なプログラム作成 必要な準備学習 これまでの授業にて配布した 授業資料等を読んで復習しておくこと
- 4. 配列や制御構造 (if、switch) を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 5. 制御構造 (for, while, do-while, breake, continue) を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 6. コンソール入出力 (getchar(), gets(), printf(), scanf()) を含んだプログラム作成 必要な準備学習 これま での授業にて配布した授業資料等を読んで復習しておくこと
- 7. 関数(基本形,引数と戻り値)を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 8. 関数(ローカル変数とグローバル変数,記憶クラス)を含んだプログラム作成 必要な準備学習 これまで の授業にて配布した授業資料等を読んで復習しておくこと
- 9. ポインタの初歩を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 10. 配列とポインタに関するプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 11. 関数とポインタに関するプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと
- 12. 構造体と共用体を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと

- 13. プリプロセッサによる前処理を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業 資料等を読んで復習しておくこと
- 14. ライブラリ関数を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読ん で復習しておくこと
- 15. ファイル入出力を含んだプログラム作成 必要な準備学習 これまでの授業にて配布した授業資料等を読ん で復習しておくこと
- 16. 試験 必要な準備学習 これまでの授業にて配布した授業資料等を読んで復習しておくこと

[キーワード] プログラミング言語、C 言語

- 「教科書・参考書」新訂 新 C 言語入門 ビギナー編 , 著者・編者:林 晴比古 , 出版社:ソフトバンククリエイティブ , ISBN コード: 4797325615, 参考書 書名: C 言語入門 ASCII SOFTWARE SCIENCE Language (改訂第 3 版), 著者: Les Hancock, 他, 出版社: アスキー, ISBN: 4756102700
- 「評価方法・基準〕上記目標の達成度を評価する.評価の配分は、 期末テスト 80 %、 小テスト・レポート・出席態度 20 %とする、総合して60点以上を単位取得の達成度に達したものとみなす。
- [関連科目] プログラミング基礎,データ構造とアルゴリズム,メディカルシステム実験 I,メディカルシステム実験 II, メディカルシステム実験 III

T1L153001

授業科目名: 回路理論 I (メディカル) 科目英訳名: Electric Circuit Theory I

担当教員 : 岩坂 正和 単位数 : 2.0 単位

開講時限等: 2年前期水曜5限 授業コード: T1L153001 講義室 : 工 17 号棟 215 教室

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

- [授業概要] 回路の基礎のうち、直流回路および交流回路について必要最小限の内容について説明する。最も簡単な直流 回路が理解できるように講義を進める。インピーダンスの概念を用いることにより交流回路の解析も同様に行なえ ることを理解させる。
- [目的・目標] 一般目標: 電気回路の基本的な考え方、表現方法、解析方法及び物理的現象の意味などの電気電子工学 の基礎知識を学習する。さらに、演習問題を繰り返し解くことによってこれら基礎知識の理解を一層深め、医工学 に必要な電気的センスを身に付けることを目的とする。到達目標①知識・理解 直流回路・交流回路のし くみに関する知識を獲得し、そのはたらきを理解することができる② 思考・判断 回路図を分析し回路方 程式を組み立てる判断力を養う。交流回路の分析を行う際に最適な定理を活用できること。③: 関心・意欲 演習の際に積極的に挙手して取り組む姿勢をみせること。授業中に回路に関する討論を行う際,積極的に参加で きること。④ 態度 出席状況 良好な出席状況である必要がある。また,授業中に私語などを慎む必要が ある。宿題レポートなどを提出期限までに出すことができる。⑤ 技能・表現 等価回路の作成の際に,効 率的かつ独自の考え方で等価回路をあみ出すことができ,その導出過程を理解しやすいように記述できること。
- [授業計画・授業内容] 直流回路における電圧、電流、電力の物理的意味、直並列接続、オームの法則、キルヒホッフの 法則などの基礎知識を学ぶ。続いて、交流回路における電圧、電流の定義、インダクタとキャパシタの働き、イン ピーダンスとアドミタンスの概念を理解し、交流回路の複素数表現について学ぶ。さらに、網目解析法、節点解析 法、電気回路の諸定理を学ぶことにより線形回路の解析法を習得する。授業中に行う演習以外に,授業外学習用の 演習問題を配布する。予習・復習とともに授業外演習問題を自己学習に活用することで十分な理解がなされる。下 記の Web(教員のホームページ)の講義受講者専用サイトにて授業進行状況・資料について確認を行うことが可 能である。授業・演習問題についての質問・模範解答をこのホームページで知ることができる。
 - 回路理論が医工学の中でどのように用いられているか概説する。
 - 電源、電圧、電流の定義を学び、これら諸量の物理的意味を理解す 2. 電気回路の基礎(電源、電圧、電流) る。 抵抗回路 抵抗とオームの法則、直流電圧源
 - 3. 抵抗における電力、抵抗の接続、電流源と電圧源 演習 回路素子とその性質
 - 4. 回路と微分法方程式
 - 5. 正弦波と複素数 正弦波交流 複素数、正弦関数のフェーザ表示
 - 6. 交流回路と記号的計算法

- 7. インピーダンスとアドミタンス
- 8. 電力、直並列回路 演習
- 9. 等価回路
- 10. 共振回路
- 11. 相互インダクタンスと変成器 相互インダクタンス 回路としての変成器
- 12. 回路の方程式 回路のグラフとキルヒホッフの法則
- 13. インピーダンス行列とアドミタンス行列 回路の双対性、電力の保存則 演習
- 14. 回路に関する諸定理 重ね合わせの理
- 15. 相反定理(可逆定理), テブナンの定理 演習
- 16. 期末試験

[キーワード] 電気回路,回路素子,回路の方程式

[教科書・参考書] 「電気回路を理解する」昭晃堂 小澤孝夫

[評価方法・基準] 期末試験、レポート提出および出席状況などにより総合的に判定する。単位認定評価に用いる各項目の%を示す。(全体で 100 点満点とした場合)[20 %]直流回路・交流回路のしくみに関する基礎的な知識を獲得し、そのはたらきを理解することができるか?(演習レポート,講義中の演習への積極的関与,中間小テスト・期末テストの結果をもとに採点する)[40 %]回路図を分析し回路方程式を組み立てることができるか?交流回路の分析を行う際に最適な定理を活用できるか?(演習レポート,講義中の演習への積極的関与,中間小テスト・期末テストの結果をもとに採点する)[30 %]効率的かつ独自の考え方で等価回路をあみ出すことができ,その導出過程を理解しやすいように記述できるか?(演習レポート,講義中の演習への積極的関与,中間小テスト・期末テストの結果をもとに採点する)[10 %]出席状況

[関連科目] 電磁気学入門1,電磁気学入門2,電子回路,ディジタル回路

[履修要件] 回路理論 1 の受講開始に際し,電磁気学入門 2 および電子回路を履修開始している必要はない。 * 線形代数の知識が必須であり,回路理論受講開始時点で既に線形代数を受講済みのはずであるが,線形代数の単位取得は必須でない。

T1L154001

授業科目名: 運動学および力学

科目英訳名: Kinematics and Mechanics

担当教員 : 大須賀 敏明

単位数: 2.0 単位開講時限等: 2 年前期水曜 2 限授業コード: T1L154001講義室: エ 17 号棟 215 教室

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 医療工学の理解に必要な 弾性体及び流体及び、分子レベルでの力学を学ぶ

[目的・目標] 人工臓器の設計に必要な弾性体の変形及び振動の理論と流体の基本的な理論を学ぶ。汎用のコンピューター解析プログラムを使用して計算する場合に、物理的に正しい計算かをただちに判断できる洞察力を養う。薬が持つ化学成分や、生体材料に含まれる未知の化学成分を決定する物理的な分析方法を説明する。

[授業計画・授業内容] 物理的な問題は、必ず計算がつきものとなる。難しい計算はコンピューターに行わせるが、入力の誤りなどに起因するコンピューター計算の異常を即座に見抜ける感覚も、磨いてゆけるように演習にも配慮する。暗算と手計算の各々に最適となる計算問題を常時示す。

- 1. 分子の色を決める要素 1
- 2. 分子の色を決める要素 2
- 3. 医療材料で使用される分子1
- 4. 医療材料で使用される分子 2
- 5. 生体の流体力学1
- 6. 生体の流体力学2
- 7. 人工臓器の流体力学1
- 8. 人工臓器の流体力学 2

- 9. 医療機器設計における弾性体理論
- 10. 医療で用いる弾性体振動 1
- 11. 医療で用いる弾性体振動 2
- 12. 医療に応用される赤外線分光
- 13. 分子の弾性振動と赤外線吸収の関係 1
- 14. 分子の弾性振動と赤外線吸収の関係 2
- 15. 溶液の拡散と混合の流体力学的な説明
- 16. 最終試験

[教科書・参考書] プリントを配布する

[評価方法・基準] 課題に対するレポート提出と授業への参加態度及び、試験の結果を考慮して評価を行う。

T1L155001

授業科目名: 工業数学

科目英訳名: Industrial Mathematics

担当教員 : 山口 匡

単位数: 2.0 単位開講時限等: 2 年後期金曜 2 限授業コード: T1L155001講義室: 工 17 号棟 215 教室

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可

- [授業概要] 医工学分野で使用されるアナログ信号やディジタル信号が単純な波形の組み合わせによって表現できることを講義する。その手法として、特にフーリエ級数展開およびフーリエ変換の基礎概念から実応用について解説し、その後にラプラス変換について解説することでアナログ信号における数学的意味について解説する。また、ディジタル信号についての数学的手法である離散フーリエ変換および Z 変換ついての基本概念を解説し、物理現象を数式で表現することと時間と周波数の相互関係について講義する。
- [目的・目標] アナログ信号を単純な基本波形で表現するフーリエ級数展開およびフーリエ変換の基本的概念を理解し、物理現象を数式で表現することと時間と周波数の関係性を直感的に想像できるようになる。回路におけるインパルスやステップ関数のような過渡現象に対してどのような出力が得られるのかについて、微分方程式を解くことなく、ラプラス変換を用いることで代数方程式による解を求めることができることを理解し、簡単な回路の特性を評価できるようになる。同様に、ディジタル信号やディジタル回路に対して使用する離散フーリエ変換および Z 変換の基礎について理解する。

[授業計画・授業内容]

1. フーリエ級数展開1: 正弦波と余弦波

2. フーリエ級数展開 2: 数学的準備と展開の実例 1

3. フーリエ級数展開3: 展開の実例2

4. フーリエ変換1: 基礎概念

5. フーリエ変換2: 様々な波形の変換6. フーリエ変換3: 時間と周波数の関係

7. ラプラス変換1: 基礎概念

8. ラプラス変換 2: 様々な波形の変換 9. 逆ラプラス変換: 回路の特性評価

10. アナログ信号における工業数学のまとめ

11. 離散フーリエ変換1: DFTの基礎概念

12. 離散フーリエ変換 2: 高速フーリエ変換 (FFT)

13. Z 変換 1: 基礎概念

14. Z変換2: 回路の特性評価

15. ディジタル信号における工業数学のまとめ

16. 期末テスト

[キーワード] フーリエ級数展開,フーリエ変換,ラプラス変換,離散フーリエ変換,Z変換

[評価方法・基準] 授業の進行に応じて、適宜、レポート課題や演習問題の宿題を与え、授業による理解度のチェックと 評価を実施する。授業の最終には試験を行い、授業への参加状況、学習態度やレポート回答などをも加味して総合 的評価を行う。試験およびレポートなどでの不正があった場合には不可とする。

T1L156001

授業科目名: 電子回路 I

科目英訳名: Electronic Circuit I

担当教員 : 中口 俊哉

単位数 : 2.0 単位 開講時限等: 2 年後期月曜 2 限 授業コード: T1L156001 講義室 : エ 17 号棟 211 教室

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義・演習

[受講対象] 自学部他学科生 履修可,科目等履修生 履修可

[授業概要] 今日の生活や産業界に大きく貢献し、多くの機能を有する電子回路について学習する。 p n 接合ダイオード、バイポーラトランジスタ、 F E T の基礎特性, 演算増幅器を理解し、これらの応用回路の動作および回路設計法について学ぶ。

[目的・目標] 電子回路の基礎ならびに、電子回路を応用した機器の理解を深める。

- [授業計画・授業内容] 電子回路に必要な基礎,ダイオードの特性,バイポーラトランジスタのスイッチング特性,バイポーラトランジスタの静特性,非安定マルチバイブレータ,単安定マルチバイブレータ,双安定マルチバイブレータ,バイポーラトランジスタを用いた増幅回路,FET(電解効果トランジスタ)の基礎特性,FETを用いた増幅回路,hパラメータによる等価回路,変調・復調 差動増幅回路,
 - 1. 電子回路に必要な基礎 工学における電子回路の果たす役割および応用などについて触れ,電子回路の重要性を認識させると共に,本講義を受講する上での心構えについて述べる
 - 2. 半導体の基本特性 半導体の構造と電流の流れについて解説する
 - 3. ダイオードの特性 pn接合ダイオードの特性について述べる.順方向および逆方向の電圧・電流特性,スイッチング時の動特性などについて解説する
 - 4. バイポーラトランジスタのスイッチング特性 バイポーラトランジスタには p n p 型と n p n 型があることを説明し, バイポーラトランジスタのオン・オフ動作を解説する
 - 5. バイポーラトランジスタの静特性 バイポーラトランジスタの直流回路での動作,すなわち静特性について 解説する
 - 6. バイポーラトランジスタを用いた基本増幅回路(1) バイポーラトランジスタの小信号入力に対する特性 について解説する.
 - 7. バイポーラトランジスタを用いた基本増幅回路(2) 第6回の続きを解説する
 - 8. R C 結合増幅回路
 - 9. 直接結合増幅回路
 - 10. 变成器結合増幅回路
 - 11. 高周波増幅回路
 - 12. FETの基礎特性 FETにはp チャンネル型とn チャンネル型があることを述べ,これらの直流回路での動作,すなわち静特性について解説する
 - 13. FETを用いた増幅回路 FETの小信号入力に対する特性について解説する.また,各種増幅回路の動作 および設計法について解説する
 - 14. 帰還増幅回路
 - 15. トランジスタ回路の復習、演習
- [教科書・参考書] 教科書 電子回路基礎 根岸照雄 ほか コロナ社参考書 医・生物系のための電気・電子回路 堀川宗之著 コロナ社 電子回路 須田健二、土田英一 共著 コロナ社 Integrated Electronics: Analog and Digital Circuits and Systems (McGraw-Hill electrical and electronic engineering series)
- [評価方法・基準] 授業時間中に行う試験の平均点が60%以上で合格とする。最終的には出席点(その時間に行われた内容に対する設問に答える)を加味して判定する

 $\Gamma 1 L 157001$

授業科目名: 材料・設計・加工学

科目英訳名: Material Mechanics, Mechanical Design and Machining

担当教員 : 中村 亮一、川村 和也

単位数: 2.0 単位開講時限等: 2 年後期木曜 2 限授業コード: T1L157001講義室: 工 17 号棟 211 教室

科目区分

2012 年入学生: 専門必修 F10 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可

[授業概要] 医用機械システムの開発・設計において必要な材料力学・機械設計製図・機械加工の基礎について学ぶ

[目的・目標] (1) 応力とひずみ,たわみとねじり等材料力学の基礎について習熟する.(2)(1)を踏まえ,機械設計に必要な機械強度の概念と機械要素について理解する(3)機械製図の作図法の基礎を理解し簡単な機械要素の製図が出来る(4)機械加工の種類と特徴・理論を理解し,機構要素・機械適した加工法の選択,もしくは加工法に基づく機構要素の設計が出来る

[授業計画・授業内容]

- 1. (材料) 静力学の基本と材料力学の基本
- 2. (材料) 棒を使った軸力の扱い方
- 3. (材料) 真直はりを使った力のつり合いの捉え方
- 4. (材料) たわみとねじりの考え方
- 5. (材料)強度評価に向けた主応力の考え方
- 6. (材料) ひずみエネルギーの考え方
- 7. (設計)機械設計の要点
- 8. (設計)機械の強度と材料
- 9. (設計) 基礎機械要素 I:回転 I(トルクと軸受・歯車)
- 10. (設計) 基礎機械要素 II: ねじ , アクチュエータ
- 11. (設計)設計と製図 I:線種・投影と立体
- 12. (設計) 設計と製図 II: 2 次元製図と CAD
- 13. (加工) 加工と設計 I: 加工精度と設計
- 14. (加工) 加工と設計 II: 加工の種類
- 15. (加工) 加工理論 (切削・研削)I
- 16. (加工) 加工理論 (切削・研削)II

[キーワード] 材料力学,応力とひずみ,たわみとねじり,機械設計,製図,機械加工

[教科書・参考書] 別途指示.

[評価方法・基準] 期末試験による.また適宜レポート課題を課す.評価は 80%を試験成績,残りをレポートと出席状況 により行う.

[関連科目] T1L154001

T1L158001

授業科目名: 医用材料学

科目英訳名: Biomedical Materials

担当教員 : 山田 真澄

単位数: 2.0 単位開講時限等: 2 年前期月曜 2 限授業コード: T1L158001講義室: 工 17 号棟 211 教室

科目区分

2012 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[授業概要] 医療や生体医工学を理解する上で重要な、各種医用材料の特性や合成法について、基礎から応用までを学ぶ。 [目的・目標] メディカル工学において必要となる、医用材料に関する幅広い基礎知識を身につける。

[授業計画・授業内容]

- 1. さまざまな種類の医用材料
- 2. ポリマー材料の種類
- 3. ポリマー材料の特性
- 4. ポリマー材料の合成?縮合重合
- 5. ポリマー材料の合成?付加重合1
- 6. ポリマー材料の合成?付加重合2
- 7. 生体適合性材料
- 8. 細胞培養用材料
- 9. 抗血栓性材料
- 10. 生体由来材料
- 11. 医用材料の滅菌
- 12. ハイドロゲル材料の応用
- 13. 医用金属材料
- 14. 医用無機材料
- 15. 実際の医療用材料の例

「教科書・参考書」資料を配布する。参考書「生体機能化学」「医用材料工学」「ポリマーバイオマテリアル」

[評価方法・基準] 課題に対するレポート提出と授業への参加態度(30%)及び、期末試験の結果(70%)を考慮して評価を行う。

T1L159001

授業科目名: プログラミング設計 科目英訳名: Programming Design

担当教員 : 中口 俊哉

単位数: 2.0 単位開講時限等: 2 年後期木曜 4 限授業コード: T1L159001講義室: 総 A5F 情報処理演習室 1

科目区分

2012 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 講義・実習

[受入人数] 50

[受講対象] C 言語の文法について理解していること.

[授業概要] プログラミング設計に必要な知識と技術について,講義と実習を平行して進行する.前半はオブジェクト指向言語の特徴的概念と文法を学習し,実習でその効果を体験する.後半は,統一モデリング言語(UML)を使ったソフトウェア設計とユーザインターフェースの設計について解説と実習を行い,最後にソフトウェアテストの重要性と公開について触れる.

[目的・目標] 大規模化するプログラミング開発を支える設計技術や知識の獲得を目指す. 講義と実習を平行して実施することで基本的体験もできる.

[授業計画・授業内容] 前半はオブジェクト指向言語の特徴的概念と文法を学習し,後半は,統一モデリング言語 (UML)を使ったソフトウェア設計とユーザインターフェースの設計について学習する.

- 1. プログラミング設計とプログラミング言語
- 2. オブジェクト指向言語 1 概念
- 3. オブジェクト指向言語 2 多様性
- 4. オブジェクト指向言語 3 クラスと継承 1
- 5. オブジェクト指向言語 4 クラスと継承 2
- 6. オブジェクト指向言語 5 テンプレート
- 7. オブジェクト指向言語 6 デザインパターン

- 8. 統一モデリング言語(UML)を使ったソフトウェア設計 1 概念
- 9. 統一モデリング言語 (UML) を使ったソフトウェア設計 2 設計の実際 1
- 10. 統一モデリング言語(UML)を使ったソフトウェア設計3 設計の実際2
- 11. ユーザインターフェース設計 1 概念と設計指針
- 12. ユーザインターフェース設計 2 設計の実際 1
- 13. ユーザインターフェース設計 3 設計の実際 2
- 14. ソフトウェアテストと公開

[キーワード] プログラム設計,オブジェクト指向,統一モデリング言語 (UML),ユーザインターフェース設計,テスト [教科書・参考書] 参考書「標準講座 C++」ハーバート・シルト (著), 翔泳社「独習 UML」株式会社テクノロジックアート (著), 翔泳社

[評価方法・基準] 毎週実習の課題をメールで提出し, それをもとに採点する.

T1L160001

授業科目名: プログラミング特講 II

科目英訳名: Advanced Computer Programming II

担当教員 : 大沼 一彦

単位数 : 2.0 単位 開講時限等: 2 年後期水曜 2 限

授業コード: T1L160001 講義室 : 総統合情報セ電算実習室 2

科目区分

2012 年入学生: 専門選択必修 F20 (T1L:メディカルシステム工学科)

[授業の方法] 実習・実技

[受入人数] 40

[受講対象] メディカルシステムのみ

[授業概要] ここでは、C++以外のソフトについても触れることを目的としている。今回は、簡単に手に入れることができる統計処理とコンピュータグラフィックのソフトの学習を行う。

- [目的・目標] 医療現場ではデータの分析において統計処理が広く行われている。確率や統計の知識が少ないと、単純集計してグラフにする程度になり、せっかくの重要な情報を得られないとか適切な判断ができないことになります。最低限の確率や統計に関する知識とそれを使った推定、検定を R と EXCEL を使って習得するのが目的です。本科目で理論と実務を同時に修得する。 また、3次元コンピュータグラフィックス(CG)はプレゼンテーションにおいて、とても重要な役割を持っています。ここでは簡単に CG を作ることのできる POV-RAY というソフトの使い方になれることと、それを使った課題作品をつくれるようになることを目的とする。
- [授業計画・授業内容] 前半に統計処理、後半に 3 次元コンピュータグラフィックス (CG) を行う。前半は、統計と確率、および多変量解析について R, エクセルをつかい、後半は POV ー RAY を用いた実習を行う。
 - 1. 確率の基礎、順列・組合せ、確率の概念、ベイズの定理、RとEXCELの統計関数の使い方の説明
 - 2. 統計分布の基礎 平均、分散、標準偏差、共分散、相関係数
 - 3. 最小二乗法(一次式、多項式)、確率分布、正規分布
 - 4. 推定と検定 正規分布と推定・検定、 t 分布と推定・検定
 - 5. F分布と推定・検定 、 2分布と推定・検定
 - 6. 「多変量解析の基礎」 重回帰分析、判別分析、主成分分析、因子分析
 - 7. 課題
 - 8. コンピュータグラフィックソフト 入門 POV-RAY 入門
 - 9. POV-RAY 入門 基本ウィンドウ 画像の描画 座標系 回転 拡大・縮小カメラの設定 光源の設定 物体の配置 地面の配置背景の設定 インクルードファイル 命令文のコメント化 物体の拡大縮小 物体の回転 物体の移動 描画の繰り返し テクスチャの使用 物体性質の変更 画像出力の設定
 - 10. 質感の表現 石、木、金属、硝子の表現 pigment, finish normal interior による質感の表現 画像の貼り 付け
 - 11. 形の作成 基本図形、集合演算による作成、回転、引き伸ばしによる形の作成、2次曲線、3次曲線、ベジェ 曲線
 - 12. アニメーション、カメラの移動、物体の移動

- 13. 作品創作 今まで習得した手法を用いてアニメーション CG の作成 (1)
- 14. 作品創作 今まで習得した手法を用いてアニメーション CG の作成 (2)
- 15. 作品創作 今まで習得した手法を用いてアニメーション CG の作成(3)

[キーワード] 確率統計、CG R, エクセル、POV - RAY 計算機

[教科書・参考書] http://www.kogures.com/hitoshi/webtext/

http://www.asahi-net.or.jp/~va5n-okmt/pov/tutorial/index.html

[評価方法・基準] 出席および課題、CG 作品、それらのプログラムを評価対称として、授業内容の理解度、プログラム 作成能力を評価基準とする。

T1Y016001

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.)

担当教員 : 植田憲

単位数 : 2.0 単位 開講時限等: 1 年前期火曜 5 限 授業コード: T1Y016001 講義室 : エ 2 号棟 201 教室

科目区分

2013 年入学生: 専門基礎必修 E10 (T1KC:建築学科 (先進科学) , T1KE:デザイン学科 (先進科学) , T1N:建築学科 , T1P:デザイン学科) , 専門基礎選択必修 E20 (T1E:都市環境システム学科 , T1E3:都市環境システム学科 (社会人枠) , T1K4:メディカルシステム工学科 (先進科学) , T1L:メディカルシステム工学科 , T1T:画像科学科 , T1U:情報画像学科) , 専門基礎選択 E30 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科 , T1S:ナノサイエンス学科) , 専門選択科目 F36 (T1M:共生応用化学科 , T1M1:共生応用化学科生体関連コース , T1M2:共生応用化学科応用化学コース , T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[授業概要] 「工学」とは「ものづくり」であり、「ものづくり」とは「造形」である。「造形演習」は、いくつかの「造形」に関する課題を通して、「工学=ものづくり」に対する関心を鼓舞し、学生のひとりひとりが有する造形の 資質を覚醒する。

[目的・目標] 本演習の具体的な目的は、以下のようである。(1)「学び取る」姿勢を培う。(2)多面的な観察能力を養う。(3)多様な解の存在を認識する。(4)プレゼンテーション能力を涵養する。「造形演習」の4つの課題のひとつひとつには、限られた時間のなかで精一杯にチャレンジし、満足するまで成し遂げることが求められている。頭脳と手とを連動させ、「手を動かし、汗をかき、想いをめぐらし、創る」まさに「手汗想創」を体感する。

[授業計画・授業内容]

- 1. 全体ガイダンスおよびクラス分け(於:教育学部 2101 教室「視聴覚教室」) 備考参照のこと
- 2. 第1課題:「鉛筆による精密描写」
- 3. 第1課題の演習
- 4. 第1課題の講評
- 5. 第2課題:「展開図に基づいた立体物の描写」
- 6. 第2課題の演習
- 7. 第2課題の講評
- 8. 中間発表会
- 9. 第3課題:「卓上ランプシェードの制作」
- 10. 第3課題の演習
- 11. 第3課題の講評
- 12. 第4課題:「飛行体の造形」
- 13. 第4課題の演習
- 14. 第4課題の講評
- 15. 展示会、まとめ、全体講評

[キーワード] 観察・思索,デザイン,手汗想創,プレゼンテーション

[教科書・参考書] 特にありません。

[評価方法・基準] 成績評価は、出席状況、作品・プレゼンテーションの状況に基づいて行います。

[関連科目] 特にありません。 [履修要件] 特にありません。 [備考] 特にありません。

T1Y016002

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.)

担当教員 : 田内 隆利

単位数: 2.0 単位開講時限等: 1 年前期火曜 5 限授業コード: T1Y016002講義室: 創造工学センター

科目区分

2013 年入学生: 専門基礎必修 E10(T1KC:建築学科(先進科学), T1KE:デザイン学科(先進科学), T1N:建築学科, T1P:デザイン学科), 専門基礎選択必修 E20(T1E:都市環境システム学科, T1E3:都市環境システム学科(社会人枠), T1K4:メディカルシステム工学科(先進科学), T1L:メディカルシステム工学科, T1T:画像科学科, T1U:情報画像学科), 専門基礎選択 E30(T1KD:機械工学科(先進科学), T1Q:機械工学科, T1S:ナノサイエンス学科), 専門選択科目 F36(T1M:共生応用化学科, T1M1:共生応用化学科生体関連コース, T1M2:共生応用化学科応用化学コース, T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

- 1. 全体ガイダンスおよびクラス分け(於:教育学部2101教室「視聴覚教室」) 備考参照のこと
- 2. 第1課題:「鉛筆による手の描写」
- 3. 第1課題の演習
- 4. 第1課題の演習・講評
- 5. 第2課題:「三面図に基づいた立体物の描写」
- 6. 第2課題の演習・講評
- 7. 第3課題:「輪ゴム動力車の制作」
- 8. 第3課題の演習:調査結果に基づく制作物のプレゼンテーション
- 9. 第3課題の演習:制作
- 10. 第3課題の発表
- 11. 第4課題:「紙サンダルの制作
- 12. 第4課題の演習:調査結果に基づく制作物のプレゼンテーション
- 13. 第4課題の演習:制作
- 14. 第4課題の発表
- 15. 展示会及び講評

[評価方法・基準] 出席状況、制作物やプレゼンテーションのクオリティを総合的にみて評価する [備考] 創造工学センターはサンダルやヒールの高い靴厳禁。

T1Y016003

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.) 担当教員 : 玉垣 庸一, 下村 義弘

単位数 : 2.0 単位 開講時限等: 1 年前期火曜 5 限 授業コード: T1Y016003 講義室 : エ 2-アトリエ (2-601)

科目区分

2013 年入学生: 専門基礎必修 E10(T1KC:建築学科(先進科学), T1KE:デザイン学科(先進科学), T1N:建築学科, T1P:デザイン学科), 専門基礎選択必修 E20(T1E:都市環境システム学科, T1E3:都市環境システム学科(社会人枠), T1K4:メディカルシステム工学科(先進科学), T1L:メディカルシステム工学科, T1T:画像科学科, T1U:情報画像学科), 専門基礎選択 E30(T1KD:機械工学科(先進科学), T1Q:機械工学科, T1S:ナノサイエンス学科), 専門選択科目 F36(T1M:共生応用化学科, T1M1:共生応用化学科生体関連コース, T1M2:共生応用化学科応用化学コース, T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

1. 全体ガイダンスおよびクラス分け (於:教育学部 2101 教室「視聴覚教室」) 備考参照のこと [評価方法・基準]

T1Y016004

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.) 担当教員: 鈴木 弘樹, 吉岡 陽介

単位数 : 2.0 単位 開講時限等: 1 年前期火曜 5 限 授業コード: T1Y016004 講義室 : 工 15 号棟 110 教室

科目区分

2013 年入学生: 専門基礎必修 E10 (T1KC:建築学科(先進科学), T1KE:デザイン学科(先進科学), T1N:建築学科, T1P:デザイン学科), 専門基礎選択必修 E20 (T1E:都市環境システム学科, T1E3:都市環境システム学科(社会人枠), T1K4:メディカルシステム工学科(先進科学), T1L:メディカルシステム工学科, T1T:画像科学科, T1U:情報画像学科), 専門基礎選択 E30 (T1KD:機械工学科(先進科学), T1Q:機械工学科, T1S:ナノサイエンス学科), 専門選択科目 F36 (T1M:共生応用化学科, T1M1:共生応用化学科生体関連コース, T1M2:共生応用化学科応用化学コース, T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

1. 全体ガイダンスおよびクラス分け (於:教育学部 2101 教室「視聴覚教室」) 備考参照のこと [評価方法・基準]

T1Y016005

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.) 担当教員 : UEDA EDILSON SHINDI

単位数 : 2.0 単位 開講時限等: 1 年前期火曜 5 限 授業コード: T1Y016005 講義室 : エ 2 号棟 102 教室

科目区分

2013 年入学生: 専門基礎必修 E10(T1KC:建築学科(先進科学), T1KE:デザイン学科(先進科学), T1N:建築学科, T1P:デザイン学科), 専門基礎選択必修 E20(T1E:都市環境システム学科, T1E3:都市環境システム学科(社会人枠), T1K4:メディカルシステム工学科(先進科学), T1L:メディカルシステム工学科, T1T:画像科学科, T1U:情報画像学科), 専門基礎選択 E30(T1KD:機械工学科(先進科学), T1Q:機械工学科, T1S:ナノサイエンス学科), 専門選択科目 F36(T1M:共生応用化学科, T1M1:共生応用化学科生体関連コース, T1M2:共生応用化学科応用化学コース, T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[受入人数] 60

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

- [授業概要] 「工学」とは「ものづくり」であり、「ものづくり」とは「造形」である。「造形演習」は、いくつかの「造形」に関する課題を通して、「工学=ものづくり」に対する関心を鼓舞し、学生のひとりひとりが有する造形の資質を覚醒する。
- [目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

- 1. 全体ガイダンスおよびクラス分け(於:教育学部 2101 教室「視聴覚教室」) 備考参照のこと
- 2. 第1課題:「鉛筆による精密描写」
- 3. 第1課題の演習
- 4. 第1課題の講評
- 5. 第2課題:「展開図に基づいた立体物の描写」
- 6. 第2課題の演習
- 7. 第2課題の講評
- 8. 中間発表会
- 9. 第3課題:「水」「火」「土」「風」のテーマから一つを選び、自由に形を創ろう
- 10. 第3課題の演習
- 11. 第3課題の講評
- 12. 第4課題:「Biophotovoltaics」
- 13. 第4課題の演習
- 14. 第4課題の講評
- 15. 展示会

[キーワード] 観察・思索,デザイン,手汗想創,プレゼンテーション

[教科書・参考書] 特にありません。

[評価方法・基準] 成績評価は、出席状況、作品・プレゼンテーションの状況に基づいて行います。出席:40% 作品・プレゼンテーション:60%

[関連科目] 特にありません。

[履修要件] 特にありません。

[備考] 特にありません。

T1Z051001

授業科目名: 工学倫理

科目英訳名: Engineering Ethics

担当教員 : 荒井 幸代

単位数 : 2.0 単位 開講時限等: 3 年後期月曜 5 限

授業コード: T1Z051001 講義室 : 大講義室

大講義室は教育学部2号館の講義室である。

科目区分

2011 年入学生: 専門基礎選択必修 E20 (T1E:都市環境システム学科, T1E3:都市環境システム学科(社会人枠), T1KC:建築学科(先進科学), T1L:メディカルシステム工学科, T1N:建築学科), 専門基礎選択 E30 (T1P:デザイン学科, T1S:ナノサイエンス学科), 専門選択必修 F20 (T1M:共生応用化学科, T1M1:共生応用化学科生体関連コース, T1M2:共生応用化学科応用化学コース, T1M3:共生応用化学科環境調和コース, T1T:画像科学科)

[授業の方法] 講義

[受講対象] 工学部 2~4年次 (学科により指定あり)。

[授業概要] 工学は科学・技術のさまざまな成果を活かし,我々の生活及び生活環境を豊かにする実践の学問である。しかし,その使用の方向,利用の仕方が適正でない時、社会的な大きな混乱や損失が生じ,ひいては個人の生活を脅かす事態となる。本講義では,社会との関係における工学者の使命,規範,役割,権利と義務等について広範な視点から論述する。

[目的・目標] 技術者が社会において,正しい倫理観に基づいた技術の発展と社会貢献を進めるための基本的な概念と知識を身につけることを目的とする。

[授業計画・授業内容] 実際の開講時には変更になる可能性があります。

- 1. 10/7 ガイダンス (10分:荒井 幸代:千葉大学大学院工学研究科) 倫理とは(高橋 久一郎:千葉大学文学部)
- 2. 10/21 工学倫理の特徴(忽那 敬三:千葉大学文学部)
- 3. 10/28 コンプライアンスと倫理綱領(小波 盛佳 技術士)
- 4. 11/11 製造物責任(小波 盛佳:技術士)
- 5. 11/18 公益通報 (小波 盛佳:技術士)
- 6. 11/25 倫理的問題の解決(小波 盛佳:技術士)
- 7. 12/2 技術者・職業人としての心構え(小波 盛佳:技術士)
- 8. 12/9 学生とは何者か(大来 雄二:金沢工業大学)
- 9. 12/16 情報技術と著作権 ~ 私的録音・録画補償金制度~(全 へい東:千葉大学総合メディア基盤センター)
- 10. 1/6 技術者の知的所有権等財産的権利(1)(高橋 昌義:弁理士)
- 11. *1/14 (火) 技術者の知的所有権等財産的権利 (2)(高橋 昌義:弁理士)
- 12. 1/20 資源エネルギー消費と環境倫理(町田基:千葉大学総合安全衛生管理機構)
- 13. 1/27 安全とリスク(1)(篠田 幸信: 労働安全コンサルタント)
- 14. 1/29 安全とリスク(2)(篠田 幸信: 労働安全コンサルタント)
- 15. 2/3 各学科においてグループ討議 (各学科)

[キーワード] 工学者の使命,モラル,義務,規範,技術者倫理

- [教科書・参考書] 参考書 1) 斎藤了文他編「はじめての工学倫理」第 2 版、昭和堂 (2005),1400 円+税, 2) 杉本泰治他「技術者の倫理 入門」第 4 版、丸善出版 (2008),1700 円+税
- [評価方法・基準] 毎回,講義の最後に小テストを実施し,その結果をふまえて判定します。12回以上出席しないと, 単位認定できませんので注意してください。
- [履修要件] 各学科の科目区分はオンラインシラバスを参照のこととし,表示がない場合は各学科教育委員に確認してください。
- [備考] 講師の都合により順番,内容に関して変更する場合があります。1回目の授業の初めに行うガイダンスに必ず出席して下さい。

T1Z052001

授業科目名: 知的財産権セミナー

科目英訳名: Seminar:Intellectual Property Rights

担当教員 : (朝倉 悟)

単位数 : 2.0 単位 開講時限等: 3 年前期集中 / 前期金曜 4.5 限

授業コード:T1Z052001 講義室 : 工 9 号棟 106 教室

科目区分

2011 年入学生: 専門基礎選択必修 E20 (T1E:都市環境システム学科, T1E3:都市環境システム学科 (社会人枠), T1KC:建築学科 (先進科学), T1L:メディカルシステム工学科, T1N:建築学科), 専門基礎選択 E30 (T1P:デザイン学科)

[授業の方法] 講義

[受入人数] 100 人まで

[受講対象] 自学部他学科生 履修可

- [授業概要] 独創的な知的創造活動により創出された知的財産を権利保護し,この知的財産権を有効に活用することにより,新たな知的財産が創出されていく。このような「知的創造サイクル」を推進していくことは,近年重要な国家戦略として認識されている。この授業では,知的財産権のうち特許に代表される産業財産権を中心として,実務上必要となる基本的な知識と考え方について習得することを目的とする。
- [目的・目標] この授業における学習到達目標は,以下のとおりである。1. 知的財産,知的財産権等の概念について,説明することができる。2. 発明の特許要件について理解することができる。3. 特許電子図書館を用いて,特許情報の調査を行うことができる。
- [授業計画・授業内容] 主な内容は以下のとおりである。発明を保護する特許制度の説明が中心となるが,他の制度や最近の動向についても解説する。学生の理解・興味等に応じ,適宜変更がありうる。

- 1. 特許制度の概要
- 2. 発明の概念
- 3. 産業上の利用可能性
- 4. 新規性, 進歩性
- 5. 特許分類と先行技術調査
- 6. 特許電子図書館の活用
- 7. 特許請求の範囲,明細書の記載
- 8. 出願書類の作成
- 9. 審査, 拒絶理由への対処
- 10. 審判
- 11. 訴訟
- 12. 特許権の経済的利用
- 13. 実用新案制度, 意匠制度の概要
- 14. まとめ・試験

[キーワード] 知的財産,知的財産権,産業財産,産業財産権,発明,特許

[教科書・参考書] 特に指定しないが、特許法が収録された法令集を持参すること。なお、授業に際しては、適宜レジュメを用意するほか、参考書として、工業所有権情報・研修館「産業財産権標準テキスト 総合編」を配布する予定である。

[評価方法・基準] レポート, 試験等を総合的に判断して,60点以上を合格とする。

[履修要件] 特許法の基本的事項について学習するが,法律の知識は前提としない。興味ある学生の積極的な参加を歓迎する。

[備考] 平成25年度は6月7日,14日,21日,28日,7月5日,12日,19日の金曜日4限・5限に行います。

T1Z053001

授業科目名:情報技術と社会

〔学部開放科目〕

科目英訳名: Information Technology and Society

担当教員 : 全へい東,井宮淳,多田充

単位数 : 2.0 単位 開講時限等: 後期水曜 2 限 授業コード: T1Z053001 講義室 : エ 17 号棟 211 教室

科目区分

(未登録)

[授業の方法] 講義・演習

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 情報通信技術 (IT) は人類史上に前例を見ないほど急速な発展をとげた技術分野である.この授業では情報通信技術と関連の深い技術を取り上げ,その発展の歴史を通じ,現代社会とのかかわりについて考察を深める.

[目的・目標] 情報通信技術 (IT) に深く関わるコンピュータ, 暗号・認証, インターネットの3つの技術の歴史を通じ情報技術と現代社会との関連に対する知識を深める.

- [授業計画・授業内容] 第1回は授業全体の概要を説明する.また授業の進め方(課題提出,成績評価等)について, 重要な事項を説明するので履修する者は必ず出席すること. 第1回から第15回までの15回の授業を,3名 の担当教員が5回ずつ分担して行う. 下の各回の授業内容は, 【主題】(担当教員名)授業内容の順に記した.
 - 1. 【授業概要】授業の進め方など【暗号・認証の歴史】(多田) 共通鍵暗号方式、公開鍵暗号系
 - 2. 【計算の難しさ】(多田)計算可能性,計算量,現実的な計算可能性,乗算と素因数分解
 - 3. 【一方向性関数と公開鍵暗号系】(多田)多項式時間計算可能性、多項式時間帰着、一方向性関数
 - 4. 【公開鍵暗号系の安全性】(多田) 攻撃モデル、証明できる安全性
 - 5. 【公開鍵暗号系関連技術】(多田) 公開鍵証明書、PKI、SSL
 - 6. 【電気通信の歴史】(全)電気通信の夜明け,無線通信,電話の発明
 - 7. 【コンピュータの歴史】(全) コンピューター時代の幕開け,メインフレーム,バッチ処理と対話処理

- 8. 【コンピュータネットワーク (1)】(全)回線交換とパケット交換,スプートニクショック,端末問題」, ARPANET,インターネットの誕生
- 9. 【コンピュータネットワーク (2)】(全) ARPANET から NSFNET へ, "Let there be a protocol" (The Internet Genesis), WWW, インターネットの商用解放,ブラウザ戦争
- 10. 【インターネットと現代社会】(全)インターネット時代の法と倫理,情報セキュリティ,プライバシーと個人情報保護
- 11. 【通信と交通による情報伝達の歴史】(井宮) 情報通信手段の歴史を概観し交通システムと情報伝達手段との 歴史的関係
- 12. 【情報科学の科学、工学への影響】(井宮) 計算構成論が他の科学技術へ及ぼした影響として機械工学への影響、映画産業への応用、医学への応用について
- 13. 【計算器と計算機の歴史 1】(井宮)数の表現法と計算技法の歴史
- 14. 【計算器と計算機の歴史 2】(井宮) 計算の機械による実現の手法としてのアルゴリズム構成法 , プログラムへの変換法
- 15. 【演習】(井宮)「計算器の計算機の歴史1」「同2」の授業内容に関する演習【まとめ】授業評価アンケート, 授業まとめ
- [キーワード] 情報通信技術(IT), 数・計算(機)の歴史, 暗号・認証の歴史, インターネットの歴史, 著作権とIT, 情報セキュリティ・暗号

[教科書・参考書] 授業時間に指定する

[評価方法・基準] 課題提出(3回)による

- [関連科目] 情報関連科目 (情報処理, 計算機の基礎, プログラミング, 情報理論, ソフトウェア工学, ネットワーク構成論, 情報通信システム, 情報システム構成論, など)
- [備考] 本科目は「技術史」の読み替え科目である.都市環境システム学科(A、Bコース)デザイン工学科建築系、メディカルシステム工学科、情報画像工学科及び共生応用化学科(物質工学科)の学生がこの科目を履修しても卒業要件単位にならないので注意すること。デザイン工学科意匠系は、専門科目の専門選択(他学科の履修と同様の扱い)となる。

T1Z054001

授業科目名: 工業技術概論

科目英訳名: Introduction to Industrial Technologies

担当教員 : 魯云

単位数: 2.0 単位開講時限等: 前期月曜 5 限授業コード: T1Z054001講義室: 工 17 号棟 111 教室

科目区分

(未登録)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可

- [授業概要] まず、日本の工業技術を中心に世界の工業技術の発展、また工業技術による生活、環境、エネルギーなどの変化から工業技術の歴史、現状および将来について解説する。また、工業技術者として必要な考え方、資料調査、技術論文の書き方、研究発表の仕方などについて講義するとともに、理工系学生として勉強の仕方、レポートの書き方などを教える
- [目的・目標] 理工系外国留学生として工業技術の発展、また工業技術による生活、環境、エネルギーなどの変化について理解を深めるとともに、工業技術者として必要な基礎力(考え方、資料調査、技術論文の書き方、研究発表の仕方など)、また理工系学生として勉強の仕方、レポートの書き方などを教えることを目的としている。同時に外国人留学生が日本の工業技術について理解を深め、将来、母国の産業や工業技術の発展に尽くしたり日本の企業で働く場合に役立てるようにする。
- [授業計画・授業内容] 講義は二部に分けて行う。第1部 工業技術の歴史、現状および将来(第1回~第9回)第2部 研究開発者への道理解を深めるため、講義資料は Web で配布してプロジェクターによって講義を行う。レポートと課題発表によって達成度を評価する。(第10回~第15回)
 - 1. オリエンテーション及び本科目の講義内容など
 - 2. 世界工業技術のあゆみ
 - 3. 日本工業技術のあゆみ

- 4. ユニークな工業技術
- 5. 工業技術と生活
- 6. 工業技術と環境・エネルギー
- 7. 21世紀の工業技術
- 8. レポートの書き方
- 9. 課題発表-1
- 10. 研究開発の基本的考え方-1
- 11. 研究開発の基本的考え方-2
- 12. 資料調査について
- 13. 技術論文の書き方
- 14. 研究発表について
- 15. 課題発表-2
- 16. 課題発表-3
- [教科書・参考書] 教科書は、特に指定しない。授業中に資料(プリント)を Web で配布する。参考書は、講義中に随時紹介する。授業資料(プリント)の配布:http://apei.tu.chiba-u.jp/Luyun-HP.html (Lecture 欄から)
- [評価方法・基準] 成績は、出席状況(30%)と演習やレポート結果(30%)及び研究発表の結果(40%)を総合評価し、これらの合計点(100 点満点)が 60 点以上の者に対して所定の単位を与える。

[履修要件] 特になし

[備考] この科目は外国人留学生向けの科目で、外国人留学生の科目区分は専門選択科目(F30 又は F36)となるが、日本人学生が履修した場合は余剰単位(Z99)となり卒業要件単位とならない。

T1Z055001

授業科目名: 居住のデザインと生活技術

科目英訳名: Dwelling Design and Living Technology

担当教員 : 魯云

単位数 : 2.0 単位 開講時限等: 後期金曜 4 限 授業コード: T1Z055001 講義室 : エ 17 号棟 213 教室

科目区分

(未登録)

[授業の方法] 講義・演習

[受入人数] 40 人程度まで

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

- [授業概要] 授業は丸山 純が担当する。授業は講義にゼミ(学生による母国の生活についての紹介)を交えて構成される。
- [目的・目標] 人が生活をするということは、与えられた環境のなかでさまざまな工夫を重ね、身の回りから都市や地域のスケールに至るいろいろなデザインをすることに他ならない。環境を形成して行く職能をめざす外国人留学生には、まず、そのような居住のためのデザインや生活技術に注目し、それがどのように展開されてきたか、また現在、展開されつつあるかを理解することが求められる。
- [授業計画・授業内容] 居住のためのデザインや生活技術について、日本の事例だけでなく、留学生の母国の事例をゼミ 形式で取り上げ、理解を深めたい。また、フィールド調査の方法、まとめ方、レポートや論文の執筆方法について も解説する。期間中には、学外見学も予定している。
 - 1. 10月4日 オリエンテーション:住むとはどういうことか?そのために人はどのようなデザインをしてきたか?
 - 2. 10月11日 世界には、どんなところにどのような住まいと地域があるか?
 - 3. 10月 18日 日本の街には、どのような住まいがあるか?そこではどのような生活をしているか?その1現代の住まい
 - 4. 10月19日(土)(仮)現地見学:浦安市郷土博物館見学 日本の漁村には、どのような住まいがあり、どのような生活があったか?
 - 5. 10月 25日 日本の街には、どのような住まいがあるか?そこではどのような生活をしているか?その 2 歴史 的な住まい

- 6. 11 月 8 日 日本の農村や漁村には、どのような住まいがあるか?そこではどのような生活をしているか?その 1
- 7. 11月15日 日本の農村や漁村には、どのような住まいがあるか?そこではどのような生活をしているか?その2
- 8. 11月22日 人は、「食」(しょく)とその空間をどのようにデザインしてきたか?
- 9. 11月29日 人は「季節」とどのように向き合い、どのように住まいにデザインしてきたか?
- 10.12月6日 人は「信仰」をどのように確認し、すまいと地域をどのようにデザインしてきたか?
- 11. 12月13日 人は「付き合い」をどのように住まいと地域社会にデザインして来たか。
- 12. 12月20日 フィールド調査の方法
- 13. 1月10日 レポート・論文の書き方
- 14. 1月17日 全体討論
- 15. 1月24日 まとめ

[キーワード] すまい、デザイン、生活技術、食事、信仰、フィールド調査

[教科書・参考書] 教科書はとくに指定しない。参考書は、授業の進行にしたがい、適宜紹介する。

[評価方法・基準] 出席票を兼ねた小アンケート、ゼミでのレポート発表、終了レポート

[履修要件] 特になし

[備考] この科目は外国人留学生向けの科目で、外国人留学生の科目区分は専門選択科目(F30 又は F36)となるが、日本人学生が履修した場合は余剰単位(Z99)となり卒業要件単位とはならない。