syll m
ksyltex Ver $2.36 (2011\mbox{-}07\mbox{-}13)$ by Yas

2011 年度 工学部機械工学科 授業科目一覧表

	字部機械上字科 授業科目一覧表	24 /2 44	88+#n+79.55	+0.1/ ** □	_
授業コード		単位数	開講時限等	担当教員	頁
T1Q001001	機械工学セミナー	2.0	1年前期月曜2限	胡寧	機械 3
T1Q002001	微分方程式演習	2.0	2年前期金曜3限	松坂 壮太	機械 4
T1Q003001	統計力学	2.0	2年前期金曜1限	(斉藤 敏明)	機械 5
T1Q004001	統計力学演習	1.0	2年前期金曜2限隔週1,3	(斉藤 敏明)	機械 6
T1Q008001	機械システム入門	2.0	1年後期火曜 4,5 限	加藤 秀雄他	機械 7
T1Q009001	プログラミング	2.0	1年後期水曜5限	森吉 泰生	機械 8
T1Q010001	材料科学	2.0	1年後期月曜2限	浅沼 博	機械 9
T1Q011001	工業数学 I	2.0	2年前期月曜4限	三神 史彦	機械 10
T1Q012001	材料力学 I	2.0	2年前期火曜2限	胡寧	機械 11
T1Q013001	熱力学 I	2.0	2年前期火曜4限	田中 学	機械 13
T1Q014001	鉄鋼材料	2.0	2年前期水曜2限	魯云	機械 14
T1Q015001	機械運動学	2.0	2年前期水曜4限	中本 剛	機械 15
T1Q016001	メカトロニクス	2.0	2年前期木曜2限	加藤 秀雄	機械 16
T1Q017001	材料力学演習	2.0	2 年前期火曜 3 限隔週 1,3 2 年後期木曜 2 限隔週 1,3	胡寧	機械 17
T1Q018001	熱力学演習	2.0	2 年前期火曜 5 限隔週 1,3 2 年後期水曜 3 限隔週 1,3	田中 学他	機械 19
T1Q019001	解析力学	2.0	2年後期火曜2限	並木 明夫	機械 20
T1Q020001	熱力学 II	2.0	2年後期水曜2限	森吉 泰生	機械 21
T1Q021001	材料力学 II	2.0	2年後期金曜1限	胡寧	機械 22
T1Q022001	流体力学 I	2.0	2年後期月曜3限	三神 史彦	機械 24
T1Q023001	基礎制御理論 I	2.0	2年後期金曜2限	野波 健藏	機械 25
T1Q024001	設計基礎論	2.0	2年後期火曜3限	中本 剛	機械 26
T1Q025001	計測基礎論	2.0	2年後期水曜1限	並木 明夫	機械 28
T1Q026001	工業数学 II	2.0	2年後期月曜2限	渡辺 知規	機械 29
T1Q027001	流体力学演習 I	1.0	2年後期火曜1限隔週1,3	三神 史彦	機械 30
T1Q028001	非鉄金属材料	2.0	2年後期火曜4限	浅沼 博	機械 31
T1Q029001	機械加工学	2.0	3年前期水曜3限	森田 昇	機械 32
T1Q030001	機械工学実験	6.0	3 年通期木曜 3,4,5 限	各教員	機械 33
T1Q031001	機械製図基礎	2.0	3年前期水曜 4,5 限	小林 謙一他	機械 34
T1Q031003	機械製図基礎	2.0	3年前期金曜 4,5 限	樋口 静一	機械 36
T1Q032001	流体力学 II	2.0	3年前期火曜3限	劉浩他	機械 38
T1Q033001	機械振動学	2.0	3年前期金曜3限	野波 健藏	機械 39
T1Q034001	塑性力学	2.0	3年前期月曜3限	小山 秀夫	機械 40
T1Q035001	伝熱工学	2.0	3年前期月曜4限	前野 一夫	機械 41
T1Q036001	数値計算法	2.0	3年前期火曜5限	武居 昌宏	機械 42
T1Q037001	材料強度学	2.0	3年前期火曜4限	小林 謙一他	機械 43
T1Q038001	基礎制御理論 II	2.0	3年前期月曜5限	並木 明夫	機械 44
T1Q039001	機械設計製図	2.0	3 年後期水曜 4,5 限	樋口 静一	機械 45
T1Q039003	機械設計製図	2.0	3年後期金曜 4,5 限	比田井 洋史	機械 47
T1Q040001	機械工学実習	2.0	3 年後期水曜 4,5 限	各教員	機械 48
					r -

2011 年度 工学部機械工学科 シラバス

授業コード	授業科目名	単位数	開講時限等	担当教員	頁
T1Q040003	機械工学実習	2.0	3 年後期金曜 4,5 限	各教員	機械 49
T1Q041001	デザイン工学	2.0	3 年後期月曜 4,5 限	各教員	機械 51
T1Q042001	塑性加工	2.0	3年後期金曜2限	小山 秀夫	機械 52
T1Q043001	熱流体工学	2.0	3年後期月曜2限	武居 昌宏	機械 53
T1Q044001	バイオメカニクス	2.0	3年後期火曜3限	劉浩他	機械 54
T1Q045001	トライボロジー	2.0	3年後期金曜3限	三科 博司	機械 55
T1Q046001	精密加工学	2.0	3年後期水曜3限	森田 昇	機械 56
T1Q047001	機能材料	2.0	3年後期火曜2限	浅沼 博	機械 57
T1Q048001	インターンシップ	2.0	3年通期集中	加藤 秀雄他	機械 58
T1Q049001	流体力学演習 II	1.0	3年前期水曜1限隔週1,3	劉浩	機械 59
T1Q050001	ロボット工学	2.0	4 年前期金曜 4,5 限隔週 1,3	並木 明夫	機械 60
T1Q051001	自動車工学	2.0	4年前期火曜3限	(関山 惠夫)	機械 61
T1Q052001	宇宙工学	2.0	4年前期火曜2限	(石井 信明)	機械 62
T1Q053001	燃焼学	2.0	4 年前期木曜 4,5 限隔週 1,3	(佐藤 研二)	機械 63
T1Q054001	卒業研究	6.0	4年通期集中	各教員	機械 63
T1Q055001	エネルギー論	2.0	4年前期水曜4限	前野 一夫	機械 65
T1Y016001	造形演習	2.0	1年前期火曜5限	植田 憲	機械 65
T1Y016002	造形演習	2.0	1年前期火曜5限	田内 隆利	機械 66
T1Y016003	造形演習	2.0	1年前期火曜5限	玉垣 庸一他	機械 67
T1Y016004	造形演習	2.0	1年前期火曜5限	福川 裕一	機械 67
T1Y016005	造形演習	2.0	1年前期火曜5限	UEDA EDILSON SHINDI	機械 67

Γ1Q001001

授業科目名: 機械工学セミナー

科目英訳名: Introduction to Mechanical Engineering

担当教員 : 胡 寧

単位数 : 2.0 単位 開講時限等: 1 年前期月曜 2 限

授業コード:T1Q001001 講義室 : 工 15 号棟 110 教室, 工 17 号棟 213 教室

科目区分

2011 年入学生: 専門基礎必修 E10 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義・実験

[受入人数] 80

[受講対象] 機械工学科の学生のみ

[授業概要] 機械工学科に入学したばかりの諸君がこれから学習を行う上で必要となる事柄や,各研究室で行われている研究等を学び,自分が将来進む方向について考える機会を与える.少人数のグループに分かれて,複数の研究室を回り,研究室ごとのテーマで実験,演習,討論を行う.また,技術者としての倫理について講義で学び,ついで討論を行う.教員と学生諸君がお互いに親ぼくを深める場でもある.

[目的・目標] 機械工学科に入学したことは、これからの人生の一つのスタート地点に立ったとの観点から、自分の将来進むべき方向を見いだす機会となる、大学とは、機械工学科とは、研究とは何かを、テーマごとの実験、演習、討論から見いだすこと、あるいは見いだすきっかけを得ることができる、また、技術者倫理の講義、事故等の事例紹介、討論、レポート作成を通して、技術者倫理の初歩を身につけることができる。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	講義,演習,実験で学んだ事柄に自分の意見を加えて,簡単な文章で表現することができる.講義で学んだ事柄以外の新しい事実や情報をその文章に加えることができる.機械工学の社会への役割と技術者の使命について考えた事柄を文章にして述べることができる.	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	レポート (3回)	75 %
2	技術者倫理の講義や事例紹介で学んだ事柄に対して自分の意見を述べることができる.討論に参加することができる.	11, 12, 13, 14, 15	レポートと討論	25 %

[授業計画・授業内容]

- 1. 大学とは? 機械工学科とは? 機械工学セミナーとは?
- 2. 1 番目のテーマについて講義,実験・実習,討論
- 3.1番目のテーマについて講義,実験・実習,討論
- 4.1番目のテーマについて講義,実験・実習,討論
- 5.2番目のテーマについて講義,実験・実習,討論
- 6.~2 番目のテーマについて講義,実験・実習,討論
- 7. 2 番目のテーマについて講義,実験・実習,討論
- 8.3番目のテーマについて講義,実験・実習,討論
- 9.3番目のテーマについて講義,実験・実習,討論
- 10.3番目のテーマについて講義,実験・実習,討論
- 11. 技術者倫理概論
- 12. 技術者倫理(リスクについて知るべきこと)
- 13. 技術者倫理(倫理概念について知るべきこと)
- 14. 技術者倫理(製造物責任について知るべきこと)
- 15. 技術者倫理 (ビジネス倫理について知るべきこと)

[キーワード] 導入教育,コミニュケーション,プレゼンテーション,討論,ものつくり,技術者倫理,実験の方法,将来計画(キャリアプラン)

[教科書・参考書] 技術者倫理では教科書として斉藤了文/坂下浩司著「はじめての工学倫理」(昭和堂)を用いる.

[評価方法・基準] 3 つのテーマに関するレポート(各 25 点)と,技術者倫理におけるレポートと討論(25 点)の合計点で評価する

[関連科目] デザイン工学

[履修要件] なし

[備考] 全員が必ず受講する必要がある(必修).この科目は,機械工学科の学習教育目標の「(A)技術者倫理に基づく責任」に関する具体的な達成内容(A-1)および「(E)自己表現」に関する具体的な達成内容(E-1)と(E-2)を取り扱う.

T1Q00200

授業科目名: 微分方程式演習

科目英訳名: Seminar on Differential Equation

担当教員 : 松坂 壮太

単位数: 2.0 単位開講時限等: 2 年前期金曜 3 限授業コード: T1Q002001講義室: 工 17 号棟 213 教室

科目区分

2010 年入学生: 専門基礎選択必修 E20 (**T1KD**:機械工学科 (先進科学) , **T1Q**:機械工学科)

[授業の方法] 演習

[授業概要] 授業科目「微分方程式」が開講されているが,その講義の内容に沿った形で演習を行う。演習は「前回の復習 解法・公式の説明 演習 小テスト」の流れに沿って進める.

[目的・目標] 自然科学における多様な現象を記述するのに広く用いられている微分方程式(主に常微分方程式)について,これを解析的に解く色々な方法を習得する.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	常微分方程式の各種解法の習得 (B-1)	2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14	小テスト , 期末試験	80 %
2	簡単な物理現象のモデル化とその解析 (B-1)	1, 10	期末試験	20 %

[授業計画・授業内容]

- 1. 「微分方程式についての導入」: 微分方程式を扱う際に必要となる用語,形式・解法による方程式の分類,偏微分方程式との関連等について概説する.また本演習を習得することで,どのような問題を解くことができるのか,いくつかの物理現象を挙げて紹介する.
- 2. 「1階の常微分方程式(変数分離形)」:最も基本的な微分方程式である変数分離形の微分方程式について解法を説明し,演習を行う.また,今後よく出てくる積分法,間違いやすい積分法について復習させる.
- 3. 「1階の常微分方程式(変数分離形に帰着できる方程式)」: 簡単な変数変換により変数分離形に帰着できる微分方程式(同次形と呼ばれるものを含む)について解法を説明し,演習を行う.
- 4. 「1階の常微分方程式(完全微分方程式と積分因子)」:「全微分」,「完全微分」等の用語及び完全微分形の方程式の解法を説明し,演習を行う.また,積分因子により完全微分形となる方程式についても説明・演習を行う.
- 5. 「1階の線形微分方程式(定数変化法):「線形」,「同次」等の用語を説明した後,定数変化法による1階線 形微分方程式の解法を説明し,演習を行う.
- 6. 「1階の線形微分方程式(未定係数法)」: 微分方程式がある特定の形の場合,未定係数法は非常に有効な方法となる.第8週の内容も視野に入れながら,未定係数法による1階線形微分方程式の解法を説明し,演習を行う.
- 7. 「定数係数 2 階線形微分方程式 (同次方程式)」: 特性方程式を用いた定数係数 2 階線形微分方程式の解法を 説明し,演習を行う.また,ロンスキー行列式」,基本解」等についても説明する.
- 8. 「定数係数2階線形微分方程式(非同次方程式,未定係数法)」:第6週の内容を踏まえながら,未定係数法を 用いた非同次の定数係数2階線形微分方程式の解法を説明し,演習を行う.
- 9. 「定数係数 2 階線形微分方程式 (非同次方程式,定数変化法)」: 定数変化法による非同次の定数係数 2 階線 形微分方程式の解法を導いた後,演習を行う.
- 10. 「これまでの復習と簡単な物理現象への応用」: ばねの振動やRLC回路といった簡単な物理現象をモデル化し、これまでに習得した解法を用いて解析する.
- 11. 「任意階数の定数係数線形微分方程式」: 高階の定数係数線形微分方程式の解法を説明し,演習を行う.また, ベルヌーイ,リッカチ,オイラーの微分方程式についても説明,演習を行う.
- 12. 「微分演算子法」: 微分演算子法を用いた非同次の定数係数線形微分方程式の解法を説明し,演習を行う.
- 13. 「連立微分方程式」: 消去法による連立微分方程式の解法を説明し,演習を行う.またクラメルの公式を用いる方法についても概説する.
- 14. 「微分方程式の級数解法」:級数解法に慣れることを目的に,簡単な1,2階の微分方程式に級数解法を適用し,これまでに学習した方法とは全く別の方法で同じ解に至ることを理解させる.
- 15. これまでに学習した解法を復習・整理し,全体の見通しを良くする.
- 16. 期末試験

[教科書・参考書] 特に指定しないが,例えば1)長崎憲一,中村正彰「明解 微分方程式」,培風館(基本的な教科書),2)E.クライツィグ「常微分方程式」,培風館(物理の事例が豊富)

[評価方法・基準] 期末試験の配点を70%,小テストの配点を30%とする.小テストと期末試験の合計において60 点以上を合格とする.

[関連科目] 微分積分学, 微分方程式

[履修要件] 微分積分学が履修済みであること.

[備考] 1)この科目は,機械系コースの学習・教育目標「(B)事象の本質的理解と専門知識の応用」の関連科目になっている.2)各回の小テストには,質問・意見欄を設ける予定である.疑問点・要望等はなるべく早い段階でこの欄を通じて解決を図って頂きたい.

T1Q003001

授業科目名: 統計力学

科目英訳名: Statistical Dynamics

担当教員 : (斉藤 敏明)

単位数 : 2.0 単位 開講時限等: 2 年前期金曜 1 限 授業コード: T1Q003001 講義室 : エ 17 号棟 113 教室

科目区分

2010年入学生: 専門基礎選択 E30(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 100 名

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可; 電子機械工学科 2 年生以上の学生と先進科 学プログラム課程および他学科学生で受講が認められた者。

[授業概要] 熱力学,統計力学の基礎的な内容を,1年生で習う一般物理,微積分の範囲で理解できるように平易に解説する。将来,必要が生じたときに自力で更に勉強できるように,基本的概念を強調する。

[目的・目標] 統計力学の考え方を初歩的な立場から説明し、その枠組みの本質を理解すると共に,応用力を身につける ことを主眼とする。

	科目の達成目標	関連する授業週	達成度評価方法	科目の放領評価全 体に対する重み
1	熱的諸概念と熱力学第1、および第2法則について習得する。電 (D-2)(D-3)	1-6	レポート課題、期末試験	30 %
2	統計力学の基本的原理とその応用について習得する。電 (D-2) (D-3)	7-12	レポート課題、期末試験	60 %
3	古典統計力学について習得する。電 (D-2) (D-3)	13-15	期末試験	10 %

- 1. 巨視的系の物理:熱力学,統計力学の対象となるのは同じ巨視的な系であるが,そのアプローチの仕方は異なる。熱平衡状態での巨視的状態と微視的状態の関係を簡単な粒子のモデルで示し,これからの講義の序論とする。
- 2. 熱的諸概念:前回示した熱平衡状態の性質をもとに,状態方程式,熱容量,準静的過程等,基本的な熱的諸概念について述べる。
- 3. 熱力学第1法則 I: 熱エネルギーを含めたエネルギー保存則について論ずる。又, 状態量の概念, 全微分, 偏微分の扱い方, 理想気体の断熱変化, Joule の実験について説明する。
- 4. 熱力学第 2 法則 I: Kelvin と Clausius の第 2 法則に対する表現を述べ, それらが等価であることを示す。また、Carnot サイクル、Carnot の定理について述べ、熱機関の効率について論ずる。
- 5. 熱力学第2法則 II: 熱力学的絶対温度, Clausius の不等式について説明し, 状態量としてのエントロピーの概念を導入する。
- 6. 熱力学的ポテンシャルと熱力学の応用:種々の熱力学的関係式を示し、Helmholts, Gibbs の自由エネルギーについて説明する。
- 7. 統計力学の原理 I:統計的集団 (アンサンブル) の考え方と基本的な確率の概念について述べる。巨視的状態の統計的重率を使い孤立系の平衡 (ミクロカノニカル集合)について論ずる。また、エントロピーの統計力学的な導入を行なう。
- 8. ミクロカノニカルアンサンブルの応用:フレンケル欠陥やゴムの1次元モデルなどを説明する。
- 9. 統計力学の原理 II:簡単な量子力学の原理と、それによる微視的状態(固有状態)について平易に説明する。これにより、熱浴中の平衡について論じ,カノニカルアンサンブル,ボルツマン分布等について説明する。
- 10. カノニカルアンサンブルの応用 I: 応用として、二準位系 (ショットキー比熱)、調和振動子の問題などを説明する。
- 11. カノニカルアンサンブルの応用 II: 固体の熱容量、理想気体などの問題を説明する。

- 12. カノニカルアンサンブルの応用 III (ミクロカノニカルアンサンブルとの関係): 同じ例題 (二準位系、調和振動子)をカノニカルアンサンブルとミクロカノニカルアンサンブルの両方の方法で解いて見せることにより統計力学の理解を深める。
- 13. 古典統計力学:位相空間の概念を使い、古典力学では系の微視的状態をどのように指定するかを示す。これにより統計力学の原理を導出し、古典統計力学によるミクロカノニカルアンサンブルとカノニカルアンサンブルについて論ずる。
- 14. 古典統計力学の応用 I:古典統計力学により,エネルギー等分配則と熱容量について述べる。
- 15. 古典統計力学の応用 II:簡単な応用問題を説明する。
- 16. 試験

[キーワード] 熱力学、統計力学、エントロピー、古典統計

[教科書・参考書] 教科書は特に指定しない。講義メモを Web で公開するか直接配布予定。参考書は、戸田、熱・統計力学(岩波) 長岡、統計力学(岩波) マンチェスター物理学シリーズ 統計物理学 I、II(共立出版) バークレー物理学 統計物理上下(丸善) 砂川、熱・統計力学の考え方(岩波) 小出、熱学(東大出版会)など。

[評価方法・基準] 期末試験(70%)と関連するレポート(30%)で評価する。目的・目標の項目は 1、2 は期末試験(60%)とレポート(30%)で、項目 3 は期末試験(10%)で達成度を評価する。期末試験およびレポートは 100 点満点で,60 点が本科目の目的・目標に掲げられている達成度に相当するような内容および難易度で出題する。単位を取得するためには,レポートと期末試験の双方を受験するとともに,レポートおよび期末試験の双方とも 60 点以上であることが必要である。

[関連科目] 熱力学、熱力学演習、統計力学演習、量子力学

[履修要件] 一般物理、微積分の基礎知識を習得しておくこと。

[備考] 本科目は,電子機械工学科の学生に対する「物理学DI 熱統計力学入門」の読み替え科目である。また,電気電子系の学習・教育目標に関連する「具体的な達成目標」の電(D-2)(D-3)に関する内容を取り扱う。

T1Q004001

授業科目名: 統計力学演習

科目英訳名: Exercise in Statistical Dynamics

担当教員 : (斉藤 敏明)

単位数: 1.0 単位開講時限等: 2 年前期金曜 2 限隔週 1,3授業コード: T1Q004001講義室: エ 17 号棟 113 教室

科目区分

2010 年入学生: 専門基礎選択 E30 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 演習

[受入人数] 100 名

[受講対象] 自学部他学科生 履修可; 電子機械工学科 2 年生以上の学生と先進科学プログラム課程および他学科学生で受講が認められた者。この演習を受講するためには統計力学の講義を受講している (または履修済みである) ことが条件になるが、演習の単位は講義とは独立に認定されるので注意すること。

[授業概要] 統計力学(熱力学を含む)の原理、応用に関する基礎的な演習を行う。

[目的・目標] 統計力学の受講生または既履修者を対象に、講義の理解を深めるために問題演習を行う。

_		科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
	1	熱的諸概念と熱力学の法則について習得する。電 $(D-2)(D-3)$	1-4	演習レポート	40 %
ſ	2	統計力学の基本的原理と簡単な応用について習得する。電 (D-2) (D-3)	5, 6, 7	演習レポート	50 %
	3	古典統計力学の基礎について習得する。電 (D-2) (D-3)	8	演習レポート	10 %

- 1. 熱平衡の概念、および巨視的状態と微視的状態の関係を簡単な粒子のモデルに関する問題演習で調べる。
- 2. 熱的諸概念と熱力学第1法則に関する問題演習
- 3. 熱力学第2法則に関するに関する問題演習
- 4. エントロピー、熱力学ポテンシャルに関する問題演習
- 5. ミクロカノニカルアンサンブルとカノニカルアンサンブルに関する問題演習 I
- 6. ミクロカノニカルアンサンブルとカノニカルアンサンブルに関する問題演習 II
- 7. ミクロカノニカルアンサンブルとカノニカルアンサンブルに関する問題演習 III

8. 古典統計力学に関する問題演習

[キーワード] 熱力学、統計力学、エントロピー、古典統計

[教科書・参考書] 特に指定しない。

[評価方法・基準] 毎回、授業の最後に演習レポートを回収する。演習レポートは 100 点満点で,60 点が本科目の目的・目標に掲げられている達成度に相当するような内容である。単位を取得するためには,毎回の演習レポートを必ず提出するとともに平均点数が 60 点を越えることが必要である。

[関連科目] 熱力学、熱力学演習、統計力学、量子力学

[履修要件] 一般物理、微積分の基礎知識を習得しておくこと。

[備考] 本科目は「物理学演習 D I 熱統計力学演習」の読み替え科目である。また、電気電子系の学習・教育目標に関連する「具体的な達成目標」の電 (D-2)(D-3) に関する内容を取り扱う。

T1Q008001

授業科目名:機械システム入門

科目英訳名: Introduction to mechanical systems 担当教員 : 加藤 秀雄, 坪田 健一, 大川 一也

単位数 : 2.0 単位 開講時限等: 1 年後期火曜 4,5 限 授業コード: T1Q008001, T1Q008002 講義室 : 工 15 号棟 110 教室

科目区分

2011 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義・実習

[受入人数] 75

[受講対象] 原則として機械工学科1年次のみ

- [授業概要] 簡単な機械の設計製作を通して、その過程で生じる種々の問題点を把握し、解決策を立案し、実際に確認することを行う. 具体的には、約5人で1班を構成し、モータ、センサ、運動伝達機構などを用いて、班ごとに独自の機械を設計製作する、授業は原則として2セメスターの前半に、2コマ/週×8週で実施する.
- [目的・目標] 機械は人にとって有用な仕事をする装置であるが、その範囲は広い、最近では情報処理装置等も機械に含める場合があるが、狭義の、あるいは従来の機械の定義では「複数の部品から成り、外から与えられたエネルギーによって動き、有用な仕事をする装置である」と言える、本授業では、簡単な機械の設計製作を通して狭義の機械を理解することを目標とする、本授業を履修すれば、機械の強度向上、エネルギーの与え方、動きの実現などについて基本的な原理を説明できるようになる、また、簡単な機械の設計製作やマイコンが使えるようになる、さらに、チーム活動の意義を知ることができ、2年次以降の専門科目の受講におけるモチベーションを高めることができる。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	与えられた素材および加工法のもとで有用な機械を提案することができる	1, 2, 3, 4, 5, 6	製作物により製作目標の高さ を評価する	20 %
2	提案した機械を設計製作することができる	7, 8, 9, 10, 11, 12, 13, 14	製作物により完成度を評価す る	30 %
3	提案および設計製作において積極的にチームへ貢献できる	5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16	行動記録によりチーム活動に 対する貢献度を評価する	20 %
4	提案および設計製作の過程についてとりまとめることができる	15, 16	製作物およびレポートにより 取りまとめの能力を評価する	30 %

- 1. (2011.10.4) 授業の目的,概要,班分け,評価方法の説明,開発事例紹介,基本素材説明
- 2. (2011.10.4) PIC (マイコン)の機能に関する概要説明
- 3. (2011.10.11) PIC の機能に関する詳細説明, PIC のプログラム例
- 4. (2011.10.11) PIC のプログラム例実行, PIC のプログラミング
- 5. (2011.10.18) 各班の目標決定,基材の配分,各班毎の作業
- 6. (2011.10.18) 各班毎の作業
- 7. (2011.10.25) 各班毎の作業
- 8. (2011.10.25) 各班毎の作業
- 9. (2011.11.1) 各班毎の作業
- 10. (2011.11.1) 各班代表者による中間報告会

- 11. (2011.11.8) 各班毎の作業
- 12. (2011.11.8) 各班毎の作業
- 13. (2011.11.15) 各班毎の作業
- 14. (2011.11.15) 各班毎の作業
- 15. (2011.11.29) 製作物の性能評価
- 16. (2011.11.29) 製作物のデモと代表者による最終報告会

[キーワード] 機械,設計,製作,モータ,センサ,マイコン

[教科書・参考書] 教科書は使用しない. 千葉大学 Moodle にアップロードした資料を使用する.

[評価方法・基準] 達成度の合計が60%以上である場合に単位を認定する

[関連科目] 情報処理,プログラミング,力学入門,機械運動学,機械要素,メカトロニクス,機械設計製図,機械加工学,機械工学実習,他

[履修要件] 特になし

[備考] この科目は,機械コース学習・目標の「(F)柔軟な思考力と計画的アプローチ」の達成度評価対象科目である.

T1Q009001

授業科目名: プログラミング 科目英訳名: Programming 担当教員 : 森吉 泰生

単位数 : 2.0 単位 開講時限等: 1 年後期水曜 5 限 授業コード: T1Q009001 講義室 : 工 17 号棟 214 教室

科目区分

2011 年入学生: 専門必修 F10(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義・演習

[受入人数] 概ね 100 名以下 (演習用の端末の台数制限)

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要]機械工学で不可欠な機械の制御に必要なプログラミングの方法を習得するために,演習を交えながら実問題を解決できるようにする.そのために,自ら計算プログラムを設計,作成,実行,不具合の修正,最適化してゆく過程を行えるようにする.

[目的・目標] 汎用プログラミング言語である C 言語を対象に学習する. プログラムの開発環境には Linux を使い, プログラムの実践的な開発手法, プログラミングの基本技法などについて端末上での実習を交えながら理解する. 機械の制御だけでなく工学系の研究に必要不可欠な数値計算法の基礎が習得できるように, プログラミングの具体的な段階を基礎から理解, 習得する.

TATE					
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み	
1	演習用端末機の操作を習得し,簡単なプログラムの編集,実行,デバッグ をできるようにする.	1, 2, 3	期末試験およびレポート	10 %	
2	流れの繰り返しを利用した具体的なプログラミングの作成,実行ができる ようにする.	4, 5, 6	期末試験およびレポート	20 %	
3	プログラムの配列,要素と書式を考慮したプログラミング手法を理解し, 応用できるようにする.	7, 8, 9	期末試験およびレポート	20 %	
4	複数の関数を使ったプログラミング手法を理解し,応用できるようにする.	10, 11	期末試験およびレポート	20 %	
5	ローカル変数 , ポインタを使ったプログラミング手法を理解し , 応用できるようにさせる .	12	期末試験およびレポート	20 %	
6	連立方程式の解法や数値積分などの具体的な数値計算法のプログラミング の作成,実行が出来るようにする.	13, 14, 15	期末試験およびレポート	10 %	

- 1. 概説および変数と関数を理解する.簡単なプログラムの作成ができるようにする.
- 2. 演習用端末機の操作の習得と簡単なプログラムの編集,実行,デバッグを体験,習得する.
- 3. 演算と型およびプログラムの流れの分岐に関する説明を行い、具体的にどのように適用するかを理解する.
- 4. プログラムの流れの繰り返しに関する説明を行い,その手法を理解する.
- 5. 多重ループを使ったプログラミングの演習を行い,具体例を解いて使い方を習得する.
- 6. プログラムの要素と書式に関する説明を行い、具体的な手法を理解する.

- 7. プログラムの要素と書式を考慮したプログラミング手法の演習を行い,具体例を解いて使い方を習得する.
- 8. 配列の説明と具体的な使用方法の説明を行い,その手法を理解する.
- 9. 配列を使ったプログラミングの演習を行い,具体例を解いて使い方を習得する.
- 10. ローカル変数,ポインタ,関数の設計に関する説明を行い,その手法を理解する.
- 11. ローカル変数,ポインタ,関数の設計に関する演習を行い,使い方を習得する.
- 12. 連立方程式の解法の具体的な問題のプログラミングに関する説明を行い,その手法を理解する.
- 13. 数値積分の具体的な問題のプログラミングに関する説明を行い,その手法を理解する.
- 14. 連立方程式の解法や数値積分などの具体的な問題のプログラミングに関する演習を行い,使い方を習得する.
- 15. 微分方程式の解法の具体的な問題のプログラミングに関する説明を行い,その手法を理解する.
- 16. 期末試験

[キーワード] プログラミング, C言語, コンピュータ, 情報処理, 数値計算法, Linux

[教科書・参考書] (教科書)「C言語と数値計算法」杉江日出澄ほか, 培風館

[評価方法・基準] レポート(出席し提出)と試験結果によって行う期末試験(90%),7回のレポート(10%)で評価する。期末試験は100点満点で,60点が本科目の目的・目標に掲げられている達成度に相当するような内容および難易度で出題する。単位を取得するためには,期末試験を受験するとともにレポートを提出し,2つの加重平均が60点以上で,かつ,期末試験が50点以上であることが必要である。

[関連科目] 情報処理

[履修要件] 情報処理を履修済みのこと

T1Q010001

授業科目名: 材料科学

科目英訳名: Material Science

担当教員 : 浅沼 博

単位数: 2.0 単位開講時限等: 1 年後期月曜 2 限授業コード: T1Q010001講義室: 工 17 号棟 214 教室

科目区分

2011 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 100 名

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 金属の特性を非金属と比較して理解する。すなわち金属の結晶構造から始まり、凝固、結晶のすべり(転位) 理論による理論強度などを学習し、実在金属と比較する。さらに機械部品へ応用するための合金化による強化法な ど材料科学的な見地から基礎的理解を深める。

[目的・目標] 機械の主たる構成部材が金属であることに鑑み、金属学の入門編として金属の結晶構造を学ぶことからスタートし、合金の相律と平衡状態図から相変態、凝固・析出理論へと発展させて合金の熱的特性を学ぶ。さらに結晶のすべり理論と転位論から弾性・塑性変形を結晶学的に解析して金属材料の理論的強度などについて理解し、機械材料として部材設計するための基礎を学ぶことを目的とする。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	金属の本質的理解:原子レベルから結晶、結晶粒へと実在の形態について 修得する。	1, 2, 3		30 %
2	合金とは?: 合金の状態図から理解し、凝固理論と拡散形態について理解する。	4, 5, 6, 7, 8, 9		40 %
3	高強度化:機械材料としては純金属ではなく、合金化して用いる理由を理 解する。	10, 11, 12		20 %
4	システムデザイン能力:機械の部材として設計するために必要な特性と応 用例を修得する。	13, 14, 15		20 %

- 1. 「材料考学」の勧め。講義の概要と機械工学における「材料」学習の重要性について説明。
- 2. 一般的な金属の結晶構造として、立方晶系と六方晶系の単位胞を例に採り、原子の配置、格子定数、面や方向をミラー指数で表示する方法
- 3. 一般的な金属の結晶構造として、立方晶系と六方晶系の単位胞を例に採り、原子の配置、格子定数、面や方向をミラー指数で表示する方法

- 4. Gibbs の相律則(合金の平衡状態, すなわち組成と温度の関係を規制する相律について理解)
- 5. 熱分析、純金属ではない二元系合金の平衡状態図の理解。てこの法則?
- 6. 二元系平衡状態図のまとめ、多元系への応用
- 7. 不変形反応とその応用
- 8. 凝固や相変態における析出理論。融液は凝固点に達しても凝固しない訳?
- 9. 原子の拡散理論
- 10. 転位
- 11. シュミットの法則と結晶のすべり
- 12. 単結晶のすべりと転位論からの材料強度の推定
- 13. 金属材料を部材として使用・設計する場合の材料試験法
- 14. 回復と再結晶、粒成長
- 15. 冷間加工と熱間加工
- 16. 総合テスト

[キーワード] 原子の結合、金属材料、結晶構造、相律、結晶核生成、平衡状態図、シュミットの法則、転位、回復、再結晶、冷間加工、熱間加工

[教科書・参考書] 機械材料学(日本材料学会編)

[評価方法・基準] 主に総合テストの成績で評価。

[関連科目] 鉄鋼材料、非鉄金属材料も受講しないと完結しない。

「履修要件」特に無し。

T1Q011001

授業科目名: 工業数学 I

科目英訳名: Applied Mathematics for Engineering I

担当教員 : 三神 史彦

単位数 : 2.0 単位 開講時限等: 2 年前期月曜 4 限 授業コード : T1Q011001 講義室 : T1Q011001 : T1Q0

科目区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 概ね50名以下

[受講対象] 自学部他学科生 履修可,他学部生 履修可,科目等履修生 履修可

[授業概要] この授業は機械工学科の学生を対象とした多変数関数の微積分(ベクトル解析)とフーリエ解析についての 講義である. 関数の線形近似として微分を捉えると,多変数関数や写像の微分が1変数の場合と同じ形で捉えられることを説明する. 発散や回転などのベクトル解析の主要な概念,曲線や曲面の向き付けの考え方などについて解説し,ストークスの定理とガウスの定理を説明する.後半は,物理現象を記述する偏微分方程式(時間微分と空間微分の関係式)の解法と密接に関連するフーリエ級数,フーリエ変換の基礎を説明し,フーリエ級数と線形代数の共通部分について解説する. 講義全体を通して,線形代数とのつながりを強く意識することになる.

[目的・目標] 1年次で学んだ線形代数学と微積分学に続き,機械工学科の専門科目に必要な数学を学ぶ.前半8回では, スカラー値関数やベクトル値関数の多変数の微積分(ベクトル解析)を学び,多次元の量の一次の関係を扱う線形 代数や,1変数の微積分とのつながりを知る.後半7回では,偏微分方程式(工業数学IIで学ぶ)への応用に必 要なフーリエ級数とフーリエ変換の基礎を学び,関数を一種のベクトルとみなせることを理解する.

_		± **	· / 0. C C C C - I/// / .	· · · · · · · · · · · · · · · · · · ·
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	ベクトルの内積,外積の性質と,その代数的・幾何学的意味を理解し,これを多変数関数の微積分やフーリエ解析で応用できるようになる.	1, 3, 5, 6, 7, 12	期末試験	20 %
2	多変数関数や写像の微分(一次近似)と連鎖律の意味を理解し,スカラー場やベクトル場の微分の計算が出来るようになる.	2, 3, 4, 5	期末試験	20 %
3	曲線と曲面の向き付けや,積分定理の意味を理解し,スカラー値関数およびベクトル場の線積分と面積分の計算が出来るようになる.	6, 7, 8.9	期末試験	20 %
4	フーリエ級数について理解し,簡単な周期関数のフーリエ級数展開の計算 ができるようになる.	10, 11, 12	期末試験	20 %
5	フーリエ変換について理解し,複素数値をとる実変数関数の微積分を使っ て簡単なフーリエ変換の計算ができるようになる.	13, 14, 15	期末試験	20 %

[授業計画・授業内容]

- 1. ベクトルの内積と外積
- 2. 全微分と線形近似
- 3. 方向微分,勾配,連鎖律
- 4. ベクトル値関数の微分
- 5. 勾配,発散,回転,ラプラス演算子
- 6. 曲線に沿う積分
- 7. 空間における曲面上の積分
- 8. ストークスの定理, ガウスの定理
- 9. フーリエ級数
- 10. フーリエ余弦級数,正弦級数
- 11. 複素形式のフーリエ級数展開
- 12. パーセヴァルの等式と関数空間の初歩
- 13. フーリエの積分公式とフーリエ変換
- 14. フーリエ変換の性質
- 15. 超関数
- 16. 期末試験
- [キーワード] ベクトルの内積・外積,全微分,方向微分,連鎖律,ベクトル場,ヤコビ行列,勾配,発散,回転,ラプラス演算子,線積分,面積分,ストークスの定理,ガウスの定理,フーリエ級数,オイラーの公式,直交関数,フーリエ変換,デルタ関数
- [教科書・参考書] 教科書は2冊使用.(1) マイベルク / ファヘンアウア (及川訳): 工科系の数学 4「多変数の微積分」 ~ ベクトル解析 ~ , サイエンス社 ISBN 978-4-7819-0781-9 (2) 壁谷喜継:フーリエ解析と偏微分方程式入門, 共立出版 ISBN 978-4-320-01948-5
- [評価方法・基準] 期末試験により,概念・理論の理解度および計算力を評価する.期末試験は 100 点満点で,60 点が本科目の目的・目標に掲げられている達成度に相当するような内容および難易度で出題する.単位を取得するためには,期末試験を受験し,60 点以上であることが必要である.
- [関連科目] 線形代数学 B 1 $(p. \#_{MR}?? G17123102)$, 線形代数学 B 2 $(p. \#_{MR}?? G17123202)$, 微積分学 B 1 $(p. \#_{MR}?? G17121111)$, 微積分学 B 2 $(p. \#_{MR}?? G17121211)$, 微分方程式 $(p. \#_{MR}?? G17153002)$, 工業数学 $\mathbf{II}(p. \#_{MR} 29 \mathbf{II})$ $\mathbf{II}(p. \#_{MR} 29 \mathbf{II})$
- [履修要件] 線形代数学 B 1 $(p. \, \text{機械?? G17123102})$, 線形代数学 B 2 $(p. \, \text{機械?? G17123202})$, 微積分学 B 1 $(p. \, \text{機械?? G17121111})$, 微積分学 B 2 $(p. \, \text{機械?? G17121211})$ を履修済みのこと .
- [備考] この科目は,機械コース学習・教育目標の「(B) 事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-1) の達成度評価対象科目である. この授業は T1Q011002 と同じ内容であり,クラス分けは掲示にて周知する.指定のクラスを履修登録しないと成績評価は 0 点になる.

T1Q012001

授業科目名: 材料力学 I

科目英訳名: Mechanics of Materials I

担当教員 : 胡寧

科目区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 100

- [受講対象] 自学部他学科生 履修可, 科目等履修生 履修可; 機械工学科 2 年生, 先進科学プログラム課程および他学科学生で受講が認められた者
- [授業概要] 応力および変形の大きさを表すひずみの概念を理解させ,引張・圧縮変形,ねじり変形とトルクの伝達,曲げモ-メントと「はり」の曲げ応力およびたわみ,せん断力の「はり」のたわみに及ぼす影響,ならびに曲げ剛性などの剛性の概念について習得させる.

[目的・目標] 材料力学は,弾性学,塑性力学,材料強度学および破壊力学を理解するためにも重要である.本科目では,機械,土木あるいは建築構造物の設計に不可欠な,応力,ひずみおよび剛性の概念を,引張,ねじり,曲げの基本的変形様式について理解させる.

_		科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
	1	応力とひずみの概念が理解できるようになる . $(B-3)$	主に1、2	期末試験	10 %
	2	単軸引張・圧縮,ねじり変形を受ける部材の応力と変形が計算できるようになる.(B-3)	3 ~ 6	期末試験	35 %
ĺ	3	曲げ変形を受ける部材の応力と変形が計算できるようになる.(B-3)	7 ~ 1 5	期末試験	55 %

[授業計画・授業内容]

- 1. 材料力学序論:外力が作用すれば必ず変形することを理解させ,材料力学は釣り合っている外力のもとでの 弾性変形を対象とすることを習得させる.応力とひずみとの間の線形関係(フックの法則)を説明する.応力~ひずみ曲線を求める引張試験について習得させる. 必要な準備学習:材料力学が応用されている工学 分野との関係についてインターネットで調査しておくこと.
- 2. 応力とひずみ:垂直応力とせん断応力,垂直ひずみとせん断ひずみ,ヤング率,ポアソン比,横弾性係数について説明する.引張試験以外の材料試験について習得させる. 必要な準備学習:第1回の授業内容を復習し,応力と材料破壊との関係を調査しておくこと.
- 3. 引張変形と圧縮変形:引張荷重,圧縮荷重を受ける真直棒の変形,応力,ひずみ,引張剛性について理解させる.せん断応力とせん断ひずみについて説明する. 必要な準備学習:第1回,第2回の授業内容を復習しておくこと.
- 4. 静定構造物の問題の解法を理解させる. 熱応力および不静定構造物の定義と特徴を説明し,その解法を習得させる. 必要な準備学習:第2回,第3回の授業内容および力のつりあい条件を復習しておくこと.
- 5. ねじり変形 (1): ねじりモーメントを受ける丸棒のせん断応力, せん断ひずみ, 断面二次極モーメントについて説明し, ねじり剛性の概念を理解させる. 必要な準備学習: 丸軸のねじり問題の工学的応用背景について、例えば、動力を伝達する伝動軸などをインターネットで調査しておくこと.
- 6. ねじり変形(2):動力を伝達する伝動軸の問題,円形断面以外の断面のせん断応力,ねじり剛性を理解させる.密巻コイルバネの荷重と変形の関係を習得する. 必要な準備学習:第5回の授業内容、特に、ねじりモーメントによる丸軸の変形およびせん断応力の特徴を復習しておくこと.
- 7. 曲げモ・メントとせん断力(1): 横荷重あるいは偶力を受ける真直な棒(梁;はり)の断面に作用する曲げモーメントとせん断力を理解させる. 必要な準備学習:教科書とからインターネットからはりの曲げ問題における曲げおよびせん断応力の特徴を調査しておくこと.
- 8. 曲げモ・メントとせん断力(2):種々の支持条件および負荷条件のもとでの曲げモーメントとせん断力を求め,両者の関係および曲げモーメント図(BMD)せん断力図(SFD)を理解させる. 必要な準備学習:第7回におけるはりの曲げおよびせん断応力を復習しておくこと.
- 9. 真直ばりの応力(1):曲げモーメントを受ける真直はりに生じる(長手方向)応力の求め方および曲げ剛性を理解させる. 必要な準備学習:第7回,8回の授業内容を復習しておくこと.
- 10. 真直ばりの応力(2): 断面二次モ・メントについて説明し、長方形断面、円形断面および中空断面の断面二次モ・メントを理解させる、 必要な準備学習:第7回~9回の授業内容を復習しておくこと.
- 11. 真直ばりの応力(3): 長方形断面,円形断面およびT形断面の応力の計算法を習得させる. 必要な準備学習:第7回~10回の授業内容を復習しておくこと.
- 12. 真直ばりの変形 (1): 曲げモーメントを受ける真直はりのたわみの基礎式を導出し,はりの任意の位置でのたわみ角およびたわみの求め方を習得させる. 必要な準備学習:第7回~10回の授業内容を復習し,曲げ変形と曲げモーメントとの関係を調査しておくこと.
- 13. 真直ばりの変形 (2): 片持ばりおよび単純支持ばりに分布荷重あるいは偶力が作用する静定ばりのたわみの 求め方を習得させる . 必要な準備学習:第12回の授業内容を復習しておくこと .
- 14. 真直ばりの変形 (3): 片持ばりおよび単純支持ばりに集中荷重が作用する静定ばりのたわみの求め方を習得させる. 必要な準備学習:第12回,13回の授業内容を復習しておくこと.
- 15. 真直ばりの変形(4):面積モーメント法および重ね合せの原理によるたわみの計算方法,せん断力によるはりのたわみの特徴を理解させる.必要な準備学習:第12回~14回の授業内容を復習しておくこと.
- 16. 期末試験:授業全般に関して、習得が必要とされる内容について試験を行い、達成度を評価する . 必要な準備学習:この授業全体を通して復習しておくこと .

[キーワード] 応力, ひずみ, 引張, 圧縮, ねじり, 曲げ, はり, ねじりモ-メント, 曲げモ-メント, 剛性

[教科書・参考書] 教科書:「ポイントを学ぶ材料力学」(西村尚編著,丸善)を使用する.参考書:「材料力学」(加藤正名など編著,朝倉).適宜プリントを配布する.

[評価方法・基準] 期末試験で60点以上であること.

[関連科目] 解析力学.

[履修要件] 解析力学の基礎を良く理解しておくこと.

[備考] 材料力学演習を並行して履修すること.

T1Q013001

授業科目名: 熱力学 I

科目英訳名: Thermodynamics I

担当教員 : 田中 学

単位数 : 2.0 単位 開講時限等: 2 年前期火曜 4 限 授業コード : T1Q013001 講義室 : T1Q013001 : T1Q0

科目区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 概ね 100 人以下

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 熱機関,熱ポンプ等の熱力学サイクルや熱力学的性能の解析や理解に必要な熱力学の基礎的事項(状態量,状態変化と熱及び仕事,熱力学第1法則,熱力学第2法則,状態量の間の関係,熱力学サイクル)について説明する.

[目的・目標] 熱力学の基本的事項(状態量,状態変化,熱力学第1法則,熱力学第2法則,熱力学の一般関係式,状態量の間の関係)についての基礎的概念の説明と状態量の計算,状態変化による熱と仕事の計算ができるようにする.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	熱力学の基礎的概念,基礎的事項を理解し,説明できるようになる.	1, 2	中間試験,期末試験	20 %
2	熱力学第 1 法則に係る基礎的事項を理解し,閉じた系の状態変化に伴う状態量の変化,熱・仕事と状態量の関係を求めることができるようになる.	3, 9, 11	中間試験,期末試験	30 %
3	熱力学第 2 法則に係る基礎的事項を理解し,説明できるようになる.また, 熱力学第 2 法則に係る基礎的問題が解けるようになる.	4, 5, 6, 7	中間試験	20 %
4	定常流動系に係る基礎的事項を理解し,定常流動系の状態変化に伴う熱・ 仕事と状態量の関係を求めることができるようになる.	10, 11	期末試験	10 %
5	熱力学の一般関係式に係る基礎的事項を理解するとともに , 基礎的な関係 式の導出ができるようになる .	12, 13	期末試験	10 %
6	内部エネルギー,エントロピ,エンタルピと状態方程式との基礎的関係を理解し,内部エネルギー,エントロピ,エンタルピを圧力,温度,質量,体積からもとめることができるようになる.	13, 14	期末試験	10 %

[授業計画・授業内容] 講義全体を「熱力学の役割」「状態量」「状態変化」「熱力学第1法則」「熱力学第2法則」「熱力学の一般関係式」「状態量の間の関係」の講義,及び「中間試験」と「期末試験」で構成し、熱力学の基礎的な概念と,重要用語の意味,及び,基本方程式の導出方法と物理的意味について説明する.また,熱と仕事の計算方法,状態量の計算方法について説明する「中間試験」と「期末試験」で達成度を評価する.

- 1. 「熱力学」の扱う物理現象について説明するとともに,熱力学の基礎的事項(系,境界,周囲,熱力学的平衡 状態,状態量,系と周囲が及ぼす物理作用)について理解させる.
- 2. 熱力学の基礎的事項(状態方程式,現実の状態変化と理想状態変化)について理解させる.
- 3. 熱力学第1法則と内部エネルギー(状態量)の物理的意味を理解させる.また,定積比熱,定圧比熱,熱機関サイクル,熱ポンプサイクル,カルノーサイクル,逆カルノーサイクル,の概念を理解させる.
- 4. 可逆状態変化,非可逆状態変化,不可能な状態変化の概念を理解させる.また,熱力学第2法則(クラウジウスの原理とトムソンの原理)の物理的意味を理解させる.
- 5. 熱力学第2法則から,熱力学的絶対温度とエントロピ(状態量)が導入された理論的道筋及び熱力学第2法則の定式化の理論的道筋を理解させる.
- 6. 熱力学第2法則から,熱力学的絶対温度とエントロピ(状態量)が導入された理論的道筋及び熱力学第2法則の定式化の理論的道筋を理解させる.
- 7. エントロピ増大の法則と等積・等温下及び等圧・等温下における熱力学ポテンシャル(ヘルムフォルツの自由エネルギー,ギブスの自由エネルギー)最小の原理について理解させる.
- 8. 中間試験
- 9. 閉じた系の準静的状態変化に伴う熱と仕事の求め方について理解させる.
- 10. 定常流動系のエネルギー保存則とエンタルピ(状態量)について理解させるとともに,定常流動系における熱と仕事の求め方について理解させる.

- 11. 基礎的な熱機関サイクルにおける状態量の変化と熱と仕事の求め方について理解させるとともに,エネルギーの形態と変換方法の基礎について理解させる.
- 12. 状態量の間に成立する熱力学の一般関係式の導出方法について説明する.
- 13. 熱力学の一般関係式を用いて,内部エネルギー,エントロピ及びエンタルピと状態方程式(質量,体積,圧力,温度との関係)の間に成立する一般関係式の導出方法を理解させる.
- 14. 理想気体,ファンデルワールス気体,実在気体の内部エネルギー,エントロピ,エンタルピと質量,体積, 圧力,温度との関係式の導出方法を理解させる.
- 15. 液体,固体の内部エネルギー,エントロピ,エンタルピと質量,体積,圧力,温度との関係式の導出方法を理解させる.
- 16. 期末試験

[キーワード] 熱力学第1法則,熱力学第2法則,状態量,状態方程式,熱機関サイクル,熱ポンプサイクル

[教科書・参考書] プリントの配布による

[評価方法・基準] 中間試験 (50%) と期末試験 (50%) で評価する.中間・期末試験はそれぞれ 100 点満点ある.単位を取得するためには,中間試験と期末試験の両者を受験するとともに,両試験の加重平均が 60 点以上であることが必要である.

[関連科目] 熱力学演習

T1Q014001

授業科目名: 鉄鋼材料 科目英訳名: Steel materials

担当教員 : 魯云

単位数 : 2.0 単位 開講時限等: 2 年前期水曜 2 限 授業コード: T1Q014001 講義室 : 工 17 号棟 213 教室

科目区分

2010年入学生: 専門必修 F10(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 100

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 主たる機械材料として用いられる鉄鋼材料について、基本的な状態図と恒温変態曲線を理解し、熱処理による組織と機械的性質の関係を学び、鉄鋼の強化方法について最近の加工熱処理についても理解を深める。

[目的・目標] 機械部品として多く設計・使用される鉄鋼の「適材適所」の選択のためには鉄鋼材料の基本的な状態図と 恒温変態曲線を理解しなければならない。また熱処理による組織と機械的性質は大きく変わるので、主体的にその 特性を制御できる知識を持たねばならない。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	純鉄の性質、Fe-C 系状態図	1, 2, 3, 14	試験	10%
2	恒温変態曲線、恒温変態を利用した熱処理	4, 5, 6, 8	試験	20 %
3	熱処理、焼入れ性に影響する因子	4, 5, 7	試験	20 %
4	鋼の強化・強靭化法、加工熱処理	8, 9	試験	20 %
5	特殊鋼	10, 11, 12	試験	15 %
6	表面硬化法	13	試験	10 %
7	材料試験法	9-12	試験	5 %

[授業計画・授業内容] 機械材料として用いられる鉄鋼材料について、基本的な状態図と恒温変態曲線を理解し、熱処理による組織と機械的性質の関係を学び、鉄鋼の強化方法についても理解を深める。その過程では関連材料試験法を、更に時間があれば鋳鉄の利用についても講義する。

- 1. 純鉄の製造法と性質
- 2. Fe-C 系状態図
- 3. 鋼の分類
- 4. 恒温变態曲線
- 5. 各種熱処理と組織
- 6. 鋼の焼入れ性
- 7. 焼入れ性に影響する因子

- 8. 恒温変態を利用した熱処理
- 9. 機械構造用鋼
- 10. 加工熱処理
- 11. 鋼の強化・強靭化法
- 12. 特殊用途鋼(工具鋼、ばね鋼、軸受鋼など)
- 13. 鉄鋼の表面硬化法
- 14. 特殊用途鋼(ステンレス鋼、耐熱・低温用途鋼)
- 15. 特殊鋼,鋳鉄
- 16. 総合試験

[キーワード] 純鉄、Fe-C 系状態図、恒温変態曲線、熱処理、焼入れ性、臨界直径、加工熱処理、特殊用途鋼、表面硬化法 [教科書・参考書] 教科書:機械材料学(日本材料学会)、参考書:金属材料基礎工学(井形直弘、本橋嘉信、浅沼博著、 日刊工業新聞社)

[評価方法・基準] 最終試験 90 %、ミニテスト 10 %

[関連科目] 材料科学 (1年後期), 非鉄金属材料 (2年後期), 機能材料 (3年前期), 材料強度学

[履修要件] 材料科学 (1年後期) を修得しておくこと。

T1Q015001

授業科目名:機械運動学

科目英訳名: Machine Kinematics

担当教員 : 中本 剛

単位数 : 2.0 単位 開講時限等: 2 年前期水曜 4 限 授業コード: T1Q015001 講義室 : 工 17 号棟 212 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 80 名. ほとんど毎回,課題を与え,採点して返却する.このため,受け入れ人数は80名が限度である.

[受講対象]機械工学科,電子機械工学科機械系コースの学生のみ履修可

[授業概要] 機械の基本的な運動を理解するために,機械を構成する各部分の変位,速度,加速度の解析方法を教員が詳解する.この解析に基づき,基本的な機構としてのリンク機構,カム機構などが全体として,どのような運動を行うか,その考え方を教員が解説する.

[目的・目標] 【一般目標】機械の複雑な運動を個々の簡単な動きに分解し、それを可能にする幾何学的条件および力学的条件を学習者が知る.これらを知ることにより、機械運動の基礎原理を学習者が理解することを目的としている【到達目標】は、下の「科目の達成目標」として記した.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	機械工学を学ぶうえで,その基盤となる機構について,学習者が説明できるようになる.そのために,機構を構成する節,対偶,および機構のもととなる連鎖について学習者が説明できるようになる.次に,自由度を理解し,連鎖の自由度を学習者が計算することができるようになる(機 B-3)	1,2	期末試験,レポート課題	10 %
2	平面機構の運動を解析するうえで役に立つ瞬間中心について学習者が理解 し,瞬間中心を求めることができるようになる(機 B-3,機 D-1)	3 , 4 , 10 , 11 , 12 , 13	期末試験,レポート課題	20 %
3	代表的な平面機構を解析するために必要な、機構の変位,速度,加速度を速度多角形,加速度多角形などの図式解法によって学習者が求めることができるようになる.これにより、機械設計のうえで重要となるリンク機構,カム装置,転がり接触による伝動機構などの代表的な機構について,その運動を学習者が説明できるようになる(機 B-3,機 D-1)	5,6,7,8,9, 10,11,12,13	期末試験,レポート課題	70 %

- 1. 機械運動学の目的,節と対偶と連鎖:本講義が力学,機械要素,機械製図基礎などの関連する科目の中で占める位置,講義の目的,取扱う範囲について述べる.本講義を受講する上での注意事項(レポート課題は全回数,提出しないと期末試験の受験資格を失うことなど)についての説明も行う.これらについて述べた後,機械運動学を学ぶ上で,基本的な事項である,節と対偶と連鎖について学ぶ.
- 2. 対偶と連鎖の自由度:自由度について説明した後,対偶と連鎖の自由度について学ぶ.自由度についての理解が重要であることを認識する.
- 3. 平面機構の運動と瞬間中心:全ての節が一つの平面に平行な平面運動を行う平面機構を取り上げる.平面機構においては,瞬間中心を用いて,ある瞬間における運動を表すことができることを学ぶ.

- 4. 瞬間中心の求め方:瞬間中心を実際に求める方法を述べる.低次対偶のみによって構成されている機構の瞬間中心,3 瞬間中心の定理,高次対偶を含む機構の瞬間中心,中心軌跡について学ぶ.
- 5. 機構の変位:機構の運動の問題は,原動節の運動が与えられて,その結果,生じる各節の運動を求めることが要求される.この問題を取扱うために,図式解法と数式解法の両方を学ぶ.
- 6. 機構の速度・加速度の基礎式:機構の速度と加速度に関する問題を取扱うために,速度と加速度を求めるための基礎式を導く.さらに導かれた式の表す物理的意味についても述べる.
- 7. 速度多角形: 図式解法によって速度を求める際に有用な速度多角形について学ぶ.
- 8. 加速度多角形:図式解法によって加速度を求める際に有用な加速度多角形について学ぶ.
- 9. 平面機構の速度:基礎式をもとにして,平面機構の速度の問題を取扱う.実際の機構の速度の問題では,基礎式に現れる量が全てそのまま与えられるとは限らない.各節が,機構の拘束に従って動くということを利用して解かなければならない.これらについて述べる.
- 10. 平面機構の加速度:基礎式をもとにして,平面機構の加速度の問題を取扱う.実際の機構の加速度の問題では,基礎式に現れる量が全てそのまま与えられるとは限らない.各節が,機構の拘束に従って動くということを利用して解かなければならない.これらについて述べる.
- 11. リンク機構の基礎:比較的長い棒状の剛体を低次対偶で結びつけて作った機構をリンク機構という.このリンク機構について,基本的な事柄を理解する.
- 12. リンク機構の具体例:リンク機構の具体例について学び,その特性を理解する.
- 13. カム装置:カム装置の定義を明らかにした後,カム装置の種類を述べる.次に,最も基本的な板カムの解析の問題を取り上げる.
- 14. カム装置:カム装置の設計の概略と方法の基礎を述べる.転がり接触車:転がり接触による伝動機構:転がり接触の条件について述べる.
- 15. 転がり接触車:転がり接触による伝動機構である転がり接触車について述べる.まとめ:機械運動学の講義内容が,どのように役立つのかを述べる.
- 16. 期末試験:講義内容の修得達成度を試験により数値化する.

[キーワード]機構,節,対偶,自由度,連鎖,瞬間中心,変位,速度,加速度,リンク機構,カム装置,転がり接触 [教科書・参考書]教科書:改訂 機構学,コロナ社,安田仁彦著.参考書は特に指定しない.

- [評価方法・基準] 評価方法は [目的・目標] に示した表の通りである.期末試験の配点を 70 % , レポート課題の配点を 30 %とする.評価基準は , 期末試験とレポート課題の総合点が 60 点以上を合格とする.期末試験を受験するため には , 授業の欠席回数が 3 回以下であり , かつ , レポート課題を全回数 , 提出しなければならない.レポート課題 の提出遅れは , 1 日ごとに , そのレポート課題の点数の 100 %を減点する.したがって , 提出が遅れると , レポート課題点数が負の値となる場合が生じる.しかし , 期末試験を受験する資格を得るためには提出しなければならな いことになる.このため , 提出期限を厳守し , レポート課題の点数が負の値とならないようにすることが , 単位取 得のためには , 必要である。期末試験は修得達成度の数値化のために行なう.修得が不完全な箇所の把握はレポート課題において行なう.
- [関連科目] 物理学 BI 力学入門 1 , 物理学 BI 力学演習 1 , 物理学 BII 力学入門 2 , 物理学 BII 力学演習 2 , 機械要素 , 機械製図基礎 , 機械設計製図
- [履修要件] 物理学 BI 力学入門 1 , 物理学 BI 力学演習 1 , 物理学 BII 力学入門 2 , 物理学 BII 力学演習 2 を履修していることが望ましい .
- [備考] この科目は,機械工学コース学習教育目標の「(B)事象の本質的理解と専門知識の応用」に関する具体的な達成内容(B-3)と「(D)システムデザイン能力」に関する具体的な達成内容(D-1)を取り扱う.時間外学習のための参考書等は提示しないが,レポート課題から行うとよい.なお,レポート課題を返却時に解答を行う.板書,レポート課題およびその解答で学習記録を作成しておくと,授業の振り返りに便利である.なお,機械工学科では,修学ポートフォリオも課している.これにより,全科目中における本科目の位置づけを振り返ることも重要である.

T1Q016001

授業科目名: メカトロニクス 科目英訳名: Mechatronics 担当教員 : 加藤 秀雄

 単位数
 : 2.0 単位
 開講時限等: 2 年前期木曜 2 限

 授業コード: T1Q016001
 講義室
 : 工 17 号棟 214 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 80

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要]機械の自動化,小形軽量化,高機能化等に重要な役割を果たしているメカトロニクス技術の基礎を学ぶ.

[目的・目標] メカトロニクス技術は,家電製品,OA機器など身の回りにある機器から輸送用機器,生産用機械にいたるまで,機械の自動化,小形軽量化,高機能化,省エネルギー化を実現するために重要な役割を果たしている.本講義では,デジタル回路とアナログ回路の基礎を理解し,機械システムへの簡単な応用法を修得することを目的とする.本講義を履修すれば,以下に示すことを行えるようになる.

, ,						
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み		
1	論理回路の原理や機能を説明できるようになる.	$\begin{array}{c} 1,\ 2,\ 3,\ 4,\ 5,\ 6,\\ 7,\ 8,\ 10 \end{array}$	中間・期末試験	30 %		
2	簡単な論理回路の設計を行えるようになる.	3, 4, 5, 6, 7, 8, 10	中間・期末試験	30 %		
3	マイクロプロセッサを用いたメカトロニクスシステムについて原理や機能 を説明できるようになる.	1, 11, 12, 13, 14	期末試験	20 %		
4	演算増幅器を用いたアナログ増幅および演算回路を設計できるようになる.	13, 14, 15	期末試験	20 %		

[授業計画・授業内容]

- 1. メカトロニクス技術の例と電子部品の基礎
- 2. トランジスタの機能とデジタル回路における数の表現
- 3. デジタル回路における基本ゲート
- 4. デジタル IC の基礎
- 5. RS フリップフロップと D フリップフロップ
- 6. JK フリップフロップとレジスタ
- 7. カウンタ
- 8. デコーダと表示器
- 9. 今までの復習と中間試験
- 10. エンコーダとマルチプレクサ
- 11. マイクロプロセッサの基礎
- 12. ステッピングモータとその駆動
- 13. アナログ増幅回路
- 14. アナログ演算回路と AD / DA 変換器
- 15. 測定器
- 16. 期末試験

[キーワード] 論理代数,論理回路,フリップフロップ,演算増幅器,アクチュエータ,センサ,マイクロプロセッサ

[教科書・参考書] 「メカトロニクスのための電子回路基礎」西堀賢司著 コロナ社(メカトロニクス教科書シリーズ1) を教科書として使用する.千葉大学 Moodle にアップロードした資料も使用する.

[評価方法・基準] 中間試験(50%), 期末試験(50%)により評価する.中間試験および期末試験は100点満点で,60点が本科目の目的・目標に掲げられている達成度に相当するような内容および難易度で出題する.単位を取得するためには,中間試験と期末試験の双方を受験し,双方の得点の平均が60点以上で,かつ,中間試験および期末試験の双方とも40点以上であることが必要である.千葉大学 Moodle での小テストの成績も参考にする.

[関連科目] 機械システム入門,計測基礎論,機械工学実験

[履修要件] 機械システム入門を履修していること

 $\mathrm{T1Q017001}$

授業科目名: 材料力学演習

科目英訳名: Exercise of Mechanics of Materials

担当教員 : 胡 寧 単位数 : 2.0 単位

開講時限等: 2年前期火曜3限隔週1,3/2年後期木曜2

限隔週 1.3

授業コード: T1Q017001 講義室 : エ 5 号棟 105 教室, エ 17 号棟 113 教室

前期は火曜 3 限に 5-105 教室で,後期は木曜 2 限に 17-113 教室で行う。履修登録は前期の履修登録期間にのみ行うことができる。履修登録は「集中」の欄から行うこと。;

- 機械 17-

科目区分

2010 年入学生: 専門選択必修 F20 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 演習

[受入人数] 100

[受講対象]機械工学科2年生,先進科学プログラム課程および他学科学生で受講が認められた者

[授業概要] 前期では,主に基本的な引張・圧縮変形,ねじり変形と動力の伝達,曲げモ-メントと「はり」の曲げ応力およびたわみに関する演習,後期では,さらに複雑な,ひずみエネルギ-による問題解法,連続ばり,モ-ルの応力円と組合せ応力のもとでの変形に関する演習を行う.

[目的・目標]機械,電気器具,土木あるいは建築構造物の設計に不可欠な,弾性変形する物体に生じる応力,ひずみと剛性の概念について理解し,引張り,ねじり,曲げの基礎的問題およびひずみエネルギーによる問題解法,連続ばり,組合せ応力のもとでの変形について,演習を通じ具体的な計算ができるようになること.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	引張・圧縮変形,ねじり変形と動力の伝達に関する問題を解くことができるようになる(機 C- 1)	1 ~ 3	レポート、期末試験	2 5 %
2	外力や偶力を受ける真直はりの断面に生ずる曲げモーメントとせん断力 , たわみに関する問題を解くことができるようになる (機 C-1)	5 ~ 7	レポート、期末試験	25 %
3	ひずみエネルギ - を用いて不静定ばりに関する問題および連続ばり・曲りばりに関する問題を解くことができるようになる(機 C-1)	8 ~ 1 3	レポート、期末試験	2 5 %
4	組合せ応力のもとでの主応力,ひずみに関する問題を解くことができるようになる(機 C- 1)	14,15	レポート、期末試験	25 %

- 1. 引張・圧縮変形 (I): 外力と内力の関係,内力と応力の関係,変位とひずみの関係,応力とひずみの関係 (フックの法則)に関する演習. 必要な準備学習:材料力学Iの授業内容を復習しておくこと.
- 2. 引張・圧縮変形 (II): 引張・圧縮変形を受ける真直棒の応力, ひずみ(変位), 静定構造物のおよび不静定構造物の部材力に関する演習. 必要な準備学習: 材料力学 I の授業内容を復習しておくこと.
- 3. ねじり変形:動力を伝達する軸,ばねなど,ねじりを受ける部材の応力やねじれ角に関する演習. 必要な 準備学習:材料力学Iの授業内容を復習しておくこと.
- 4. 真直ばりの応力:外力や偶力を受ける真直はりの断面に生ずる曲げモーメントとせん断力に関する演習. 必要な準備学習:材料力学Iの授業内容を復習しておくこと.
- 5. 曲げモ・メントとせん断力:外力や偶力を受ける真直はりの曲げモーメント図(BMD)およびせん断力図(SFD)の描き方に関する演習. 必要な準備学習:材料力学Iの授業内容を復習しておくこと.
- 6. 真直ばりの変形 (I): 集中荷重の作用する静定ばりのたわみに関する演習 . 必要な準備学習:材料力学 I の 授業内容を復習しておくこと .
- 7. 真直ばりの変形 (II): 分布荷重, 偶力の作用する静定ばりのたわみに関する演習. 必要な準備学習: 材料力学 I の授業内容を復習しておくこと.
- 8. ひずみエネルギ (I): カスティリアーノの定理,相反定理を用いた,はりの不静定問題に関する演習. 必要な準備学習:材料力学 II の授業内容を復習しておくこと.
- 9. ひずみエネルギ (II): 仮想荷重を応用した,はりの不静定問題に関する演習. 必要な準備学習:材料力学 II の授業内容を復習しておくこと.
- 10. 連続ばり (I): 分布荷重を受ける連続ばりの解法に関する演習 . 必要な準備学習:材料力学 II の授業内容を復習しておくこと .
- 11. 連続ばり (II): 各種支持条件のもとで,集中荷重を受ける連続ばりの解法に関する演習. 必要な準備学習: 材料力学 II の授業内容を復習しておくこと.
- 12. 曲りばり (I): 各種支持条件のもとで,軸力を考慮した曲がりばりの解法および軸力を考慮しない曲りばりの解法に関する演習. 必要な準備学習:材料力学 II の授業内容を復習しておくこと.
- 13. 曲りばり (II): カスティリアーノの定理を応用した曲がりばりの静定、不静定問題に関する演習 . 必要な準備学習:材料力学 II の授業内容を復習しておくこと .
- 14. 組合せ応力 (I): 数式から任意の斜面における垂直応力およびせん断応力を求め,主応力と主応力面の計算および最大(小)せん断応力の計算に関する演習. 必要な準備学習:材料力学 II の授業内容を復習しておくこと.
- 15. 組合せ応力 (II): モ・ルの応力円による主応力の計算およびフックの法則による組合せ応力のもとでのひずみの計算に関する演習 . 必要な準備学習:材料力学 II の授業内容を復習しておくこと .
- 16. 期末試験:授業全般に関して,習得が必要とされる内容について試験を行い,達成度を評価する. 必要な 準備学習:この授業全体を通した演習問題を復習しておくこと.

[キーワード] 応力, ひずみ, 引張, 圧縮, ねじり, はり, エネルギー解法, 組合せ応力, 応力円

[教科書・参考書] 「ポイントを学ぶ材料力学」(西村尚編著,丸善)を使用する.適宜プリントを配布する.

[評価方法・基準] レポ・ト(40点満点)と期末試験(60点満点)合わせて60点以上であること.

[関連科目] 材料力学 I、材料力学 II

[履修要件] 材料力学 I, 材料力学 II を並行して履修すること。

[備考] 前期は火曜 3 限に 5-105 教室で,後期は木曜 2 限に 17-113 教室で行う。履修登録は前期の履修登録期間にのみ行うことができる。履修登録は「集中」の欄から行うこと。

T1Q018001

授業科目名: 熱力学演習

科目英訳名: Exercise in Thermodynamics

担当教員 : 田中 学, 森吉 泰生

単位数 : 2.0 単位 開講時限等: 2 年前期火曜 5 限隔週 1,3 / 2 年後期水曜 3

限隔週 1.3

授業コード: T1Q018001 講義室 : 工 17 号棟 214 教室, 工 17 号棟 213 教室

前期は火曜 5 限に 17-214 教室で,後期は水曜 3 限に 17-213 教室で行う。履修登録は前期の履修登録期間にのみ行

うことができる。履修登録は「集中」の欄から行うこと。;

科目区分

2010 年入学生: 専門選択必修 F20(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 演習

[受入人数] 概ね 100 人以下

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 「熱力学 I,II」の講義内容の理解を助けるとともに,理解度を深めるため,講義内容の重点項目について演習を行う.

[目的・目標] 【前期】 熱力学を理解する上で重要な「熱力学の基礎的概念」を説明できるようになるとともに「熱力学第1法則」「熱力学第2法則」「状態変化に伴う状態量の変化」「熱力学の一般関係式」の関する基礎的な計算問題が解けるようにする【後期】応用編として「ガスサイクル」「蒸気の性質及び状態変化」「蒸気サイクル」「ガスの流動」の関する基礎的な計算問題が解けるようにする.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	熱力学の基礎的事項の意味を理解し、説明できるようになる.	1	演習,期末試験	5 %
2	熱力学第 1 法則 , 熱力学第 2 法則に係る基礎的な問題が解けるようになる .	2, 3	演習,期末試験	20 %
3	準静的状態変化に係る基礎的な状態量の変化及び仕事・熱と状態量の変化 との関係を計算することができるようになる.	4, 5, 6	演習,期末試験	20 %
4	熱力学の基礎的な一般関係式の導出ができるようになる . また , 状態量の 間の関係式を導出できるようになる .	7	演習,期末試験	5 %
5	ガスサイクルに係る基礎的な問題が解けるようになる.	9, 10	演習,期末試験	15 %
6	蒸気および状態変化に係る基礎的な問題が解けるようになる.	11, 12	演習,期末試験	15 %
7	蒸気サイクルに係る基礎的な問題が解けるようになる.	13, 14	演習,期末試験	15 %
8	ガスの流動に係る基礎的な問題が解けるようになる.	15	演習,期末試験	5 %

[授業計画・授業内容] 【前期:第1回~第8回】【後期:第9回~第16回】

- 1. 熱力学の基礎的事項(例:熱力学的平衡状態, 状態量, 状態変化, 系と周囲の物理作用, 状態方程式)の意味 を理解する演習問題に解答する.
- 2. 熱力学第1法則に関する演習問題を解く.
- 3. 熱力学第2法則に関する演習問題を解く.
- 4. 準静的状態変化に伴う状態量の変化に関する演習問題を解く.
- 5. 閉じた系の準静的状態変化に伴う熱と仕事に関する演習問題を解く.
- 6. 定常流動系における状態変化に伴う熱と仕事に関する演習問題を解く.
- 7. 熱力学の一般関係式,状態量の間の関係式の導出に関する演習問題を解く.
- 8. 前期末試験
- 9. 各種基本ガスサイクルに関する演習問題を解く.
- 10. 各種基本ガスサイクルに関する演習問題を解く.

- 11. 蒸気と状態変化に関する演習問題を解く.
- 12. 蒸気と状態変化に関する演習問題を解く.
- 13. 蒸気サイクルに関する演習問題を解く.
- 14. 蒸気サイクルに関する演習問題を解く.
- 15. ガスの流動に関する演習問題を解く.
- 16. 後期末試験

[キーワード] 【前期】状態量,状態変化,状態方程式,熱力学第1法則,熱力学第2法則【後期】ガスサイクル,実在 気体,蒸気サイクル,ガス流動

[教科書・参考書] 【前期】プリント配布による【後期】熱力学2で使用する教科書及び板書など

[評価方法・基準] 【前期・後期】毎回の演習問題 (35%) と期末試験 (65%) で評価する.単位を取得するためには,演習問題を全て提出するとともに,2回の期末試験を受験し,両者の加重平均が60点以上であること.

[関連科目] 熱力学 I,II

T1Q019001

授業科目名:解析力学

科目英訳名: Analytical Dynamics

担当教員 : 並木 明夫

単位数 : 2.0 単位 開講時限等: 2 年後期火曜 2 限 授業コード: T1Q019001 講義室 : 工 17 号棟 112 教室

科目区分

2010年入学生: 専門必修 F10(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

- [授業概要] さまざまな機械システムの運動を解析するための基礎として,解析力学について講義する。汎関数の極大、極小に関する変分問題、仮想仕事の原理、ダランベールの原理、ハミルトンの原理、最小作用の原理について解説し、具体的な力学問題に対するラグランジュの運動方程式の応用を示す。また,質点系の振動、規準振動について具体例を示して講義する。
- [目的・目標] 工学的な最適化問題に応用できる汎関数の極大、極小に関する変分問題を理解し、動力学をわかりやすく 理解することができる仮想仕事の原理、ダランベールの原理を例題を通して学ぶ。さらにハミルトンの原理、最小 作用の原理について解説し、具体的な力学問題に対するラグランジュの運動方程式の応用方法を習得するととも に,質点系の振動、振動モードについて学ぶ。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	ラグランジュの運動方程式について理解し,応用問題が解けるようになる。	1, 2, 3, 4	期末試験	20 %
2	ラグランジュの運動方程式の導出について理解し,自力で導出できるよう になる。	5, 6, 7, 8, 9	期末試験	20 %
3	変分法について理解し,応用問題が解けるようになる。	7, 8	期末試験	20 %
4	質点系の振動解析について理解し,応用問題が解けるようになる.	10, 11, 12	期末試験	20 %
5	様々なタイプの複雑な系に対する運動解析ができるようになる。	13, 14	期末試験	20 %

- [授業計画・授業内容] 仮想仕事の原理、汎関数の極大、極小に関する変分問題、ダランベールの原理、ハミルトンの原理、最小作用の原理について解説し、具体的な力学問題に対するラグランジュの運動方程式の応用を示す。また, 質点系の振動、規準振動について具体例を示して講義する。
 - 1. ラグランジュの方程式 I
 - 2. ラグランジュの方程式 II
 - 3. ラグランジュの方程式 III
 - 4. 演習 I
 - 5. ダランベールの原理とその応用
 - 6. 仮想仕事、仮想変位の原理
 - 7. 変分法 I
 - 8. 変分法 II
 - 9. ハミルトンの原理

- 10. 多自由度系の運動方程式の導出
- 11. 多自由度系の運動方程式の解と基準振動
- 12. 演習 II
- 13. 複雑な系の運動解析 I
- 14. 複雑な系の運動解析 II
- 15. 複雑な系の運動解析 III
- 16. 期末試験

[キーワード] 仮想仕事,仮想変位,変分問題,ダランベールの原理,ラグランジュの運動方程式

[教科書・参考書] 伊藤 克司著、解析力学、講談社 (今年度より変更のため注意)

[評価方法・基準] 期末試験により評価する.

[関連科目] 物理学 BI 力学入門 1、物理学 BII 力学入門 2、システム動力学、 ロボット工学

T1Q020001

授業科目名: 熱力学 II

科目英訳名: Thermodynamics II

担当教員 : 森吉 泰生

単位数 : 2.0 単位 開講時限等: 2 年後期水曜 2 限 授業コード: T1Q020001 講義室 : エ 17 号棟 213 教室

科目区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義・演習

[受入人数] 概ね 120 名以下(講義室の収容能力による)

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 工業機械を設計する上で重要な技術である熱力学の基礎と応用について,熱力学 I に引き続き講義する.すなわち,物質の状態量,状態変化と仕事及び熱との関係,熱機関・冷凍機等の熱力学サイクル,相平衡と熱力学,化学反応と熱力学,蒸気や実在気体の流れ等について理解する.

[目的・目標] 熱エネルギーを利用する熱機関,ガスタービン,冷凍機,ヒートポンプ,空調機,等の基本原理と特性について理解し,これらの機器を適切に使用するための基礎的事項を修得する.さらに,これらの機器が社会においてどのように利用されているかについて,認識を深めると共に多くの工業機器の性能設計や機器開発に必要な,熱力学の基礎知識とその応用について理解する.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	熱機器の性能設計や開発に必要な,熱力学の基礎知識とその応用について 学習する (機 A-2)	5, 6, 7, 11, 12, 14	期末試験	25 %
2	エンタルピー,内部エネルギー,エントロピー,カルノーサイクル,熱力学の第二法則を使った具体的問題を解けるようにする (機 B-3)	2, 3, 4	期末試験およびレポート	25 %
3	各種ガスサイクルの原理を理解し,具体的な応用問題を解けるようにする. (機 $B-3$)	5, 6, 7	期末試験およびレポート	25 %
4	蒸気の性質と状態変化について理解し,具体的な応用問題を解けるように する (機 B-3)	8, 9, 10, 11, 12, 13	期末試験およびレポート	25 %

- 1. 応用熱力学とはどんな学問かを紹介すると共に、その必要性について理解する.
- 2. 熱力学の基本となるエンタルピー,内部エネルギー,エントロピーについて学習すると共に,具体的利用価値を理解する.
- 3. カルノーサイクルと熱力学の第二法則について学習すると共に,具体的利用価値を理解する.
- 4. オットーサイクル,ディーゼルサイクルの解説を行い,具体的な原理と応用について理解する.
- 5. サバテサイクル,ブレイトンサイクルの解説を行い,具体的な原理と応用について理解する.
- 6. エリクソンサイクル,スターリングサイクルの解説を行い,具体的な原理と応用について理解する.
- 7. 各種ガスサイクルの応用問題の解説を行い,機械設計において環境負荷の低減や安全の重要性についても理解する.
- 8. 圧縮液,飽和液,飽和蒸気,過熱蒸気,気液固体の相変化について解説すると共に設計への応用について理解する.

- 9. 蒸気表と蒸気線図,蒸気の状態変化による熱の出入り,湿り空気について理解する.
- 10. 蒸気表と蒸気線図,蒸気の状態変化による熱の出入り,湿り空気について設計への応用について理解する.
- 11. ランキンサイクルの解説を行い,具体的な原理と応用について理解する.
- 12. 再生ランキンサイクル,再熱ランキンサイクル,再生再熱ランキンサイクルについて理解する.
- 13. 冷凍サイクル,冷媒,ヒートポンプの解説を行い,具体的な原理と応用について理解する.
- 14. 実在ガスの流れ,音速との関係,ノズル内流れについて解説すると共に設計への応用について理解する.
- 15. 燃焼による化学反応によって物質や温度・圧力の変化がどのように生じるかを理解し,燃焼後の物理量の予測方法を学ぶ.
- 16. 期末試験

[キーワード] 熱設計,環境負荷と安全,エンジン,タービン,冷凍機,ヒートポンプ,蒸気

[教科書・参考書] 熱力学 斉藤彬夫・一宮浩市著 裳華房

[評価方法・基準] 期末試験(90%),レポート(10%)で評価する。期末試験は100点満点で,60点が本科目の目的・目標に掲げられている達成度に相当するような内容および難易度で出題する。単位を取得するためには,期末試験を受験するとともにレポートを提出し,2つの加重平均が60点以上で,かつ,期末試験が50点以上であることが必要である.

[関連科目] 熱力学 I, 熱力学演習, 伝熱工学

[履修要件] 原則として「熱力学 I」を履修していること。

T1Q021001

授業科目名: 材料力学 II

科目英訳名: Mechanics of Materials II

担当教員 : 胡寧

単位数: 2.0 単位開講時限等: 2 年後期金曜 1 限授業コード: T1Q021001講義室: 工 17 号棟 214 教室

科目区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 100

[受講対象] 自学部他学科生 履修可,科目等履修生 履修可;機械工学科2年生

[授業概要] 材料力学 I に続いて,はり,軸などに荷重が作用するときの応力および変形について習得させる.材料力学 I よりもさらに高度な,複雑な問題に取り組む.特に不静定ばり問題の解法,ひずみエネルギ・による一般的な問題の解法,主応力を求めるためのモ・ルの応力円,組合せ応力のもとでの変形,柱の圧縮および長柱の座屈,薄肉円筒と厚肉円筒の応力について勉強させる.

[目的・目標] 微分法と重ね合せの原理による不静定ばり問題を解く方法,ひずみエネルギ-を用いて不静定ばりの問題を解く方法,連続ばりおよび曲りばりの取扱い方法をマスタ-させ,座屈の概念および座屈荷重と端末条件との関係を理解させ,モ-ルの応力円を用いて主応力を求める方法などに習熟して材料力学をさらに深く理解させる.特に,単軸応力ではなく,組合せ応力のもとでのフックの法則,平面応力および平面ひずみ状態など,2軸,3軸応力状態についての理解を深めることをさせる.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	材料力学 I の授業内容に対する理解を深め,微分法と重ね合せの原理を用いて,不静定ばりの問題を解くことができるようになる. ($B-3$)	1	期末試験	10 %
2	ひずみエネルギ - の概念を理解するうちに , 相反定理およびカスティリア - ノの定理を応用し , 不静定ばりの問題を解くことができるようになる . (B - 3)	2,3,4	期末試験	20 %
3	連続ばりの3モ・メントの式を理解し,両端支点の拘束条件に関する式を 追加して,支点の曲げモ・メントおよび支点反力が求められ,連続ばりの たわみ等を求めることができるようになる. (B-3)	5 , 6	期末試験	10%
4	曲りばりについて軸力を考慮するときの応力およびたわみ,軸力を考慮しないときの応力を求める考え方を学び,さらに,カスティリア・ノの定理を応用してたわみおよび不静定問題の支点反力を求めることができるようになる(B-3)	7,8,9	期末試験	15 %
5	内圧を受ける薄肉円筒に生じる応力成分,厚組合せ応力のもとでのフックの法則を理解し,体積ひずみ,平面応力,平面ひずみの概念を理解する.さらに,モ・ルの応力円を理解し,在・ルの応力円を使って任意の面の垂直応力とせん断応力,ならびに,主応力および主せん断応力の求め方を理解することができるようになる(B・3)	10,11	期末試験	15%
6	内圧を受ける薄肉円筒に生じる応力成分,厚肉円筒に生じる応力成分の分 布を理解することができるようになる. (B-3)	1 2	期末試験	15 %
7	長柱の座屈とポテンシャルエネルギ - , 分岐点 , 細長比を理解し , 端末条件による弾性座屈荷重の違い , 塑性座屈および座靴の実験公式を理解することができるようになる (B - 3)	13,14,15	期末試験	1 5 %

- 1. 不静定ばり問題を解くための微分法と重ね合せの原理による解法を説明し,特に,重ね合せの原理を活用することにより支点反力を求める考えについても勉強させる. 必要な準備学習:材料力学Iのはりの曲げ問題に関する授業内容を復習しておくこと.
- 2. ひずみエネルギ (I): ひずみエネルギ の概念を説明し,棒の引張,はりの曲げ,軸のねじりにおけるひずみエネルギ の式を求めることを理解させる. 必要な準備学習:インターネットや教科書から外力による仕事およびひずみエネルギーの基本概念を調査しておくこと.
- 3. ひずみエネルギ (II): 相反定理およびカスティリア ノの定理を説明し,特に,カスティリア ノの定理を不静定ばりへ応用して支点反力を求めることについて習得させる. 必要な準備学習:第2回の授業内容を復習しておくこと.
- 4. ひずみエネルギ (III): 仮想荷重を適用して分布荷重が作用している箇所および荷重の作用していない箇所でのたわみの求め方について習得させる. 不静定ばりだけでなく, 構造物などへのカスティリア ノの定理の応用についても理解させる. 必要な準備学習:第1回と第3回の授業内容を復習しておくこと.
- 5. 連続ばり(I): 分布荷重が作用する連続ばりの3モ-メントの式を求め,式数の不足を補う,支点支持の違いによって付加すべき式を導出し,これらを合せて支点の曲げモ-メントおよび支点反力を求めることを理解させる. 必要な準備学習:第1回~4回の授業内容を復習しておくこと.
- 6. 連続ばり(II): 集中荷重および部分的に分布荷重が作用する連続ばりの3モ-メントの式を求め,式数の不足を補う,支点支持の違いによって付加すべき式を導出し,これらを合せて支点の曲げモ-メントおよび支点反力を求めることを理解させる.支点反力の求め方も勉強させる.分布荷重と集中荷重が同時に作用するときの重ね合せについても習得させる. 必要な準備学習:第5回の授業内容を復習しておくこと.
- 7. 曲りばり(I): 軸力を考慮する曲りばりの断面係数および応力を求める考え方,ならびに,軸力を考慮しなくてもよい曲りばりについて,簡略化した式を用いて応力を求める考え方を習得させる. 必要な準備学習: 教科書から曲りばりに関する知識を予習しておくこと.
- 8. 曲りばり (II): 軸力を考慮する曲りばりおよび軸力を考慮しなくてもよい曲りばりたわみを曲げモ・メントを 積分することによって求めることを理解させる. 必要な準備学習:第7回の授業内容を復習しておくこと.
- 9. 曲りばり (III): 曲りばりのひずみエネルギ を求め,カスティリア ノの定理を応用してたわみおよび不静 定問題の支点反力を求めることを理解させる. 必要な準備学習:第1回~4回,および第7回~8回の授業内容を復習しておくこと.
- 10. 組合せ応力(I): 組合せ応力(2軸および3軸応力)のもとでのフックの法則を理解し,体積ひずみ,平面応力,平面ひずみの概念を習得させる. 必要な準備学習:インターネットや教科書から単軸応力状態と組合せ応力状態との違いを調査しておくこと.
- 11. 組合せ応力 (II): モ・ルの応力円を理解し,モ・ルの応力円を使って主応力および最大(小)主せん断応力の求め方,ならびに,任意の面に作用する垂直応力とせん断応力の求め方を習得させる. 必要な準備学習:第10回の授業内容を復習して,組合せ応力状態と主応力の関係を予習しておくこと.

- 12. 薄肉円筒,厚肉円筒:内圧を受ける薄肉円筒の応力成分を求めることを習得させ,厚肉円筒については釣合い式とフックの法則より応力成分を求めることを理解させる. 必要な準備学習:第11回の授業内容を復習しておくこと.
- 13. 長柱の座屈(I): 柱が短いときの核の概念を説明し,ポテンシャルエネルギ と座屈との関係を理解させ,両端回転端の座屈荷重の求め方について習得させる. 必要な準備学習:インターネットや教科書から構造物の強度設計と座屈問題との関係を調査しておくこと.
- 14. 長柱の座屈 (II): 分岐点,細長比を理解し,4種類の端末条件のもとでの座屈荷重を求めさせ,座屈荷重間の関係を習得させる.座屈長さの概念についても勉強させる. 必要な準備学習:第13回の授業内容を復習しておくこと.
- 15. 長柱の座屈 (III): 偏心荷重を受ける長柱の変形と座屈荷重の関係を説明し,塑性座屈に対するシャンレ-およびカルマンの考え方および長柱の座屈の各種実験公式とその意義について習得させる. 必要な準備学習:第13回と14回の授業内容を復習しておくこと.
- 16. 期末試験:授業全般に関して、習得が必要とされる内容について試験を行い、達成度を評価する . 必要な準備学習:この授業全体を通して復習しておくこと .

[キーワード] ひずみエネルギー,連続ばり,曲りばり,組合せ応力,モ-ルの応力円,座屈,円筒

[教科書・参考書] 教科書:「ポイントを学ぶ材料力学」(西村尚編著,丸善)を使用する.参考書:「材料力学」(加藤正名など編著,朝倉).適宜プリントを配布する.

[評価方法・基準] 期末試験で100点満点の60点以上が合格。期末試験では教科書,ノ・トおよび配付したプリントを参照してよい。

[関連科目] 材料力学 I, 材料力学演習

[履修要件] 材料力学 I を理解しておくこと. 材料力学演習も必ず受講すること.

[備考] 材料力学 I を履修しておくこと.質問等は(会議等がなければ)毎週金曜日午後 1:00~4:00 に受け付けるので教官室(オフィス)に来て下さい.

T1Q022001

授業科目名: 流体力学 I

科目英訳名: Fluid Mechanics I

担当教員 : 三神 史彦

単位数 : 2.0 単位 開講時限等: 2 年後期月曜 3 限 授業コード: T1Q022001 講義室 : エ 17 号棟 214 教室

科目区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 概ね 100 名以下

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] この授業は機械工学科の学生を対象とした流体力学の講義である.流体力学では液体や気体の力学的挙動を取り扱う.質点や剛体との違いを意識しながら,連続体の概念と流体の性質について説明する.静止している流体について,力のつりあいの式から重力場での圧力分布を説明し,圧力計測について述べる.運動している流体を扱うときの流体力学の基礎概念や方法論,基本用語を解説し,流体の運動が変形や回転を伴うことを示す.一次元で考えてよい流れについて,質量保存則,運動量保存則,エネルギー保存則との結びつきを説明する.ベルヌーイの式や運動量の式について,様々な流体力学上の問題への応用例を示す.この授業に続いてさらに進んだ内容を「流体力学 II」,「熱流体工学」で学ぶ.

[目的・目標] 流体力学の基本的な考え方を理解し、流体の性質、流体の静力学、一次元流れの質量保存則、運動量保存則、オイラーの運動方程式、ベルヌーイの式などを学ぶ。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	連続体の概念を理解し,流体の力学的特性を記述できるようになる.	1, 2	中間試験・期末試験	10 %
2	静止流体のつり合いの式から重力場での大気や水の圧力分布を求めたり, 静止流体中の壁面にはたらく力を計算できるようになる.	3, 4	中間試験・期末試験	15 %
3	液柱による圧力の計測と,静圧や全圧の取り出し方を理解できるようになる.	3, 11	中間試験・期末試験	15 %
4	流れを記述する方法や基本用語,流れの分類について説明できるようになる.	5	中間試験・期末試験	10 %
5	速度ベクトル場と流体の回転の関係を理解し,渦について説明できるよう になる.	6, 7	中間試験・期末試験	10 %
6	開放系での保存則の考え方を理解し,一次元流れについての質量保存則と 運動量保存則を説明できるようになる.	9, 10	期末試験	10 %
7	ベルヌーイの式の導出過程を理解し,ベルヌーイの式の適用できる流れやベルヌーイの式の各項の意味を説明できるようになる.	11	期末試験	10 %
8	ベルヌーイの式や運動量・角運動量の式を使って,様々な流体力学上の問題を考えることができるようになる.	12, 13, 14, 15	期末試験	20 %

[授業計画・授業内容]

- 1. 流体の性質 1
- 2. 流体の性質 2
- 3. 静止流体の圧力,圧力の測定
- 4. 静止流体中の壁面に作用する力
- 5. 流れの記述法と流れの分類
- 6. 変形と回転
- 7. 回転と渦,循環
- 8. 中間試験と前半のまとめ
- 9. 一次元流れの連続の式
- 10. 一次元非粘性流れの運動方程式
- 11. ベルヌーイの式
- 12. ベルヌーイの式の応用
- 13. 運動量の法則とその応用
- 14. 角運動量の法則とその応用
- 15. 推進器(プロペラ)の基礎理論
- 16. 期末試験
- [キーワード] 粘性,圧縮性,表面張力,圧力,渦,一次元流れ,連続の式,オイラーの運動方程式,ベルヌーイの式, 運動量の法則,角運動量の法則
- [教科書・参考書] 教科書: 大場謙吉・板東潔「流体の力学 現象とモデル化 」(コロナ社) ISBN978-4-339-04581-9(流体力学演習 I でも使用する), 参考書: 松尾一泰: 「流体の力学 水力学と粘性・完全流体力学の基礎」(理工学社) ISBN978-4-8445-2157-0, 日本機械学会: 『JSME テキストシリーズ 流体力学』(丸善) ISBN978-4-88898-119-4
- [評価方法・基準] 中間試験 (30%) , 期末試験 (70%) , 合わせて 100 点満点で評価する.単位を取得するためには , 総合評点が 60 点以上であることが必要である.
- [関連科目] 工業数学 $\mathbf{I}(p.$ 機械 10 $\mathrm{T1Q011001})$, 流体力学演習 $\mathbf{I}(p.$ 機械 30 $\mathrm{T1Q027001})$, 流体力学 $\mathbf{II}(p.$ 機械 38 $\mathrm{T1Q032001})$, 流体力学演習 $\mathbf{II}(p.$ 機械 59 $\mathrm{T1Q049001})$, 熱流体工学 (p. 機械 53 $\mathrm{T1Q043001})$

[履修要件] 流体力学演習 $\mathbf{I}(p.$ 機械 30 $\mathrm{T1Q027001})$ を並行して受講すること.

[備考] この科目は,機械コース学習・教育目標の「(B) 事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-3) と「(D) システムデザイン能力」に関する具体的な達成内容 (D-1) の達成度評価対象科目である.

T1Q023001

授業科目名: 基礎制御理論 I

科目英訳名: Introduction to Control Theory, Part I

担当教員 : 野波 健藏

単位数 : 2.0 単位 開講時限等: 2 年後期金曜 2 限 授業コード: T1Q023001 講義室 : 工 17 号棟 113 教室

科目区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 制御理論も基礎的な内容について講義する.特に,ラプラス変換を活用した古典制御理論の基礎,状態方程式を活用した現代制御理論の基礎について重点的に講義を行う.

[目的・目標] まず身近な制御系の例を挙げながらフィードバック制御の基本的考え方を身に付ける。次いで制御系はどのようなモデルで表現できるか、それを基に制御系の特性をいかに解析するかについての理論的手法の基礎を理解する。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	ラプラス変換,伝達関数を理解し,プロック線図を活用できるようになる.	2, 3, 5, 6, 7, 8	期末試験	30 %
2	状態空間モデルを活用できるようになる.	4, 5, 6	期末試験	20 %
3	システムの時間応答について理解し,活用できるようになる.	9, 10, 11, 12, 13	期末試験	30 %
4	システムの周波数応答について理解し,活用できるようになる.	14	期末試験	20 %

[授業計画・授業内容]

- 1. フィードバック制御とは,および,制御の歴史
- 2. ラプラス変換とラプラス逆変換
- 3. 伝達関数
- 4. 状態空間モデル
- 5. 伝達関数から状態空間へ
- 6. 状態空間から伝達関数へ
- 7. システムのブロック線図による表現
- 8. ブロック線図の等価変換
- 9. 極と零点
- 10. 1次系,2次系の応答
- 11. 零点を有する2次系の応答
- 12. 状態方程式の解
- 13. フィードバック制御の特性
- 14. 周波数応答 I
- 15. 周波数応答 II
- 16. 期末試験

[キーワード] ラプラス変換、伝達関数、状態空間、ブロック線図、極と零点、フィードバック制御、周波数応答

[教科書・参考書] 制御理論の基礎(野波健蔵編著) 東京電機大学出版局

[評価方法・基準] 期末試験により評価する。

T1Q024001

授業科目名: 設計基礎論

科目英訳名: Fundamentals of Machine Design

担当教員 : 中本 剛

単位数: 2.0 単位開講時限等: 2 年後期火曜 3 限授業コード: T1Q024001講義室: エ 17 号棟 214 教室

科日区分

2010 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 80 名. 数回,課題を与えて採点して返却するため,80 名が限度である.

[受講対象] 機械工学科,電子機械工学科機械系コースの学生のみ履修可

- [授業概要]機械の設計において,機械システムと機械要素との関係を教員が述べる.本授業は,機械設計の中で,主に機械要素に関して取り扱う.このため,機械の中における各種要素の役割と作動原理について教員が解説する.特に重要な,ねじ,軸,歯車,軸受などの要素については、それらの力学的,材料力学的および機構学的意味について詳述し,それらの簡単な設計法や規格品の選定法について教員が解説する.これらは次期に開講される「機械製図基礎」への橋渡しとなる.
- [目的・目標] 【一般目標】機械を設計するために,機械システムの中において,それを構成する機械要素の役割を学習者が理解する.さらに,それらをどのように選択あるいは設計するかという手法を学習者が理解する【到達目標】は下の「科目の達成目標」として記述した.

	· III			
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	標準,規格の意味,代表的締結用機械要素の機能を学習者が説明できるようになる. (機 B-3、機 $\mathrm{D1}$)	1, 2, 3	期末試験、レポート課題	10 %
2	使用頻度の高いボルトナット結合に関して締め付けトルクやボルトの強度など,機械設計に必要な簡単な計算を学習者が行うことができるようになる.(機 B-3、機 D1)	1, 2, 4, 5, 6	期末試験、レポート課題	30 %
3	単純な荷重条件での動力伝動軸の設計を学習者がができるようになる . (機 B -3、機 $D1)$	1, 2, 7, 8	期末試験、レポート課題	10 %
4	歯車に関して,伝達動力,強度,寸法決定などの簡単な計算を学習者が行うことができるようになる.(機 B -3、機 $D1$)	1, 2, 9, 10, 11	期末試験、レポート課題	20 %
5	案内要素,特に軸受の機能について学習者が理解し,その機能を説明できるようになる.転がり軸受については,学習者が使用条件による寿命計算ができ,適切な軸受を選定することができるようになる.すべり軸受については,学習者がその原理を理解できるようになる.(機 B-3、機 D1)	1, 2, 11, 12, 13	期末試験、レポート課題	20 %
6	運動制御用機械要素について,学習者がその機能を説明できるようになる. $($ 機 B - 3 、機 $D1)$	1, 2, 14	期末試験	10 %

[授業計画・授業内容]

- 1. 機械とは何かについて考察し,現代の機械の定義を解説する.部品数点の機械から数百万点の機械まで,機械の構成法は同じであることを示す.
- 2. この授業で学習する機械要素を定義する.機械要素に関する基本的規格である標準数,寸法許容差について述べる.
- 3. 「はめあい」について説明する.締結用機械要素全般について概説する.
- 4. 結合法のうち,溶接と溶着について述べる.
- 5. ボルトナットによる2物体結合のための締付けトルクの算定法を学習する.
- 6. 内力係数を導入することにより,ボルトナット結合体にさらに外力が加わるときの結合体間の力の変化について理解する.
- 7. 運動,動力伝動要素のひとつである軸について概説する.
- 8. 一般伝動軸と工作機械用軸などの軸に , トルク、曲げモーメントが作用する場合に , 軸が破損しないように設計するための基本的な計算方法を学ぶ .
- 9. 運動,動力伝動要素の歯車についてその目的、歯車の種類などについて概説する.
- 10. 歯車の歯形理論を学習し,インボリュート歯車による動力伝達の仕組みを理解する.インボリュート歯車の諸元の規格化について解説する.
- 11. 歯車の伝達動力と歯の強度の関係を求め、歯車の強度設計法の概略を理解する.案内要素と関連要素について概説する.滑り軸受と転がり軸受の作動原理の相違、特徴、用途などについて概説する.
- 12. 転がり軸受の寿命について,説明する.
- 13. 転がり軸受の寿命の計算方法を理解し,寿命を考慮して軸受を選定できるようにする.動圧軸受について,軸受定数,ゾンマーフェルト数などを説明し,その特性について説明する.
- 14. 動圧軸受について,レイノルズ方程式を導出し,軸受負荷を支持できる理由を説明する.すべり軸受と転がり軸受の比較を述べる.この授業が今後,どのように役立つかを述べる.
- 15. 運動制御用機械要素のうち,クラッチ,プレーキの役目と作動原理について概説する.
- 16. 期末試験

[キーワード] 機械要素、ボルト、軸、歯車、軸受、寸法許容差、はめあい

[教科書・参考書] 機械設計工学1 (改訂版)、尾田、室津 共編、培風館

[評価方法・基準] 評価方法は[目的・目標]に示した表の通りである.期末試験の配点を 70 %,レポート課題の配点を 30 %とする.評価基準は,期末試験とレポート課題の総合点が 60 点以上を合格とする.期末試験を受験するため には,授業の欠席回数が3回以下であり,かつ,レポート課題を全回数,提出しなければならない.レポート課題 の提出遅れは,1日ごとに,そのレポート課題の点数の 100 %を減点する.したがって,提出が遅れるとレポート 課題点数が負の値となる場合が生じる.しかし,期末試験を受験する資格を得るためには提出しなければならない ことになる.このため,提出期限を厳守し,レポート課題の点数が負の値とならないようにすることが,単位取得 のためには,必要である.期末試験は修得達成度の数値化のために行なう.修得が不完全な箇所の把握はレポート 課題において行なう.

[関連科目] 材料力学 I, 材料力学 II, 機械製図基礎,機械設計製図,機械運動学

[履修要件] 材料力学 I を履修しておくことが望ましい

[備考] この科目は,機械工学コース学習教育目標の「(B) 事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-3) と「(D) システムデザイン能力」に関する具体的な達成内容 (D-1) を取り扱う.時間外学習のための参考書等は提示しないが,レポート課題から行うとよい.なお,レポート課題を返却時に解答を行う.板書,レポート課題およびその解答で学習記録を作成しておくと,授業の振り返りに便利である.なお,機械工学科では,修学ポートフォリオも課している.これにより,全科目中における本科目の位置づけを振り返ることも重要である.

T1Q025001

授業科目名: 計測基礎論

科目英訳名: Fundamentals of Instrumentation

担当教員 : 並木 明夫

単位数: 2.0 単位開講時限等: 2 年後期水曜 1 限授業コード: T1Q025001講義室: エ 17 号棟 112 教室

科目区分

2010 年入学生: 専門必修 F10(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 本講義は,機械システムの実現に欠かせない計測の基礎,すなわち各種の測定器やセンサや各種測定装置に関する知識,測定データの扱い方や統計処理,計量標準,精度の評価や向上のための考え方,対象情報を感度と精度よく抽出するための測定システムの仕組みへの理解などに関して,時には概説的に,時には原理の数理的論考に深く立ち入りつつ講義する。

[目的・目標] 本講義の目標は,測定および信号処理に関する基本的な事項を学び,自ら計測システムを組むことができる能力を獲得することにあります.講義中では,実例として様々なタイプの計測システムを紹介しますが,それらに共通する計測の原理と思想を学んで下さい.

/\						
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み		
1	計測システムの基礎知識を習得し,活用できるようになる.	1, 2	期末試験	20 %		
2	計測に関わるデータ処理の基礎知識を習得し,活用できるようになる.	3, 4, 5	期末試験	30 %		
3	計測システムの仕組みについて理解し,活用できるようになる.	6-11	期末試験	30 %		
4	各種センサの動作原理と使用方法を習得し,活用できるようになる.	12-14	期末試験	20 %		

[授業計画・授業内容]

- 1. 計測の基礎 I 単位と標準 (SI単位系,物理量間の演算)
- 2. 計測の基礎 II 測定の基本的手法 (変位法と零位法)
- 3. 計測データ処理 I 測定誤差(誤差の原因,誤差の統計的取り扱い,測定精度)
- 4. 計測データ処理 II 測定誤差の統計的処理(有効数字,算術平均,誤差の伝播)
- 5. 計測データ処理 III 測定誤差の統計的処理(最小二乗法)
- 6. 計測システム I 計測システムの基本構成
- 7. 計測システム II アナログ信号処理(演算増幅器,アナログ処理回路,アナログフィルタ)
- 8. 計測システム III ディジタル信号処理(サンプリング定理,AD変換)
- 9. 計測システム IV ディジタル信号処理 (不規則雑音の信号処理)
- 10. 計測システム V ディジタル信号処理 (高速フーリエ変換)
- 11. 計測システム VI 計測システムの特性とシステム解析
- 12. センサ I (機械式センサ)
- 13. センサ II (電気電子式センサ)
- 14. センサ III (流体センサ)
- 15. センサ IV (光学式センサ)
- 16. 期末試験

[キーワード] 計測工学,信号処理,センサ工学

[教科書・参考書] 南,木村,荒木:はじめての計測工学,講談社 (今年度より変更のため注意)

[評価方法・基準] 期末試験の成績により評価する.

T1Q026001

授業科目名: 工業数学 II

科目英訳名: Applied Mathematics for Engineering II

担当教員 : 渡辺 知規

単位数: 2.0 単位開講時限等: 2 年後期月曜 2 限授業コード: T1Q026001講義室: エ 17 号棟 113 教室

科目区分

2010 年入学生: 専門選択必修 F20(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[授業概要] 本講義では,物理現象の記述や理解に必要な数学的道具である,複素関数と偏微分方程式の取り扱いを中心 に説明する.

[目的・目標] 複素関数論を修得する利点のひとつとして、専門分野を学ぶにあたって頻出する種々の定積分の計算を容易に実行できるようになるということが挙げられる.一方、偏微分方程式の解析にあたっては、いくつかの数学的道具を身につけ、それらを駆使する必要がある.したがって、本講義では、自然現象の記述や理解に必要な数学的道具である複素関数と偏微分方程式のみならず、それらに習熟する過程において、工学的にも有用ないくつかの数学的道具や手法も学ぶことができる.本講義の目的・目標は以下の三つである.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	複素関数のもつ性質を理解し,実際の計算に応用することができる(B-1)	1, 2, 3, 4, 5, 6, 14, 15	期末テスト	35 %
2	二階線形偏微分方程式の解法を習得し,実際に解くことができる(B-1)	7, 8, 9, 10, 11, 12, 13, 14, 15	期末テスト	35 %
3	工学における解析道具としての数学を使いこなすことができる(B-1)	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	期末テスト	30 %

- 1. 複素数と複素関数,および,正則関数 I (四則演算, Cauchy-Riemann の微分方程式) 必要な準備学習: キーワードについて調査しておくこと.
- 2. 複素数と複素関数,および,正則関数 II (四則演算, Cauchy-Riemann の微分方程式) 必要な準備学習: これまでの講義を復習し理解しておくこと.
- 3. 複素関数の積分と展開 I (Cauchy の積分定理, 複素級数, Laurent 展開, 留数の定理) 必要な準備学習: これまでの講義を復習し理解しておくこと.
- 4. 複素関数の積分と展開 II (Cauchy の積分定理,複素級数,Laurent 展開,留数の定理) 必要な準備学習: これまでの講義を復習し理解しておくこと.
- 5. 複素関数の積分と展開 III (Cauchy の積分定理, 複素級数, Laurent 展開, 留数の定理) 必要な準備学習: これまでの講義を復習し理解しておくこと.
- 6. 複素関数の積分と展開 IV (Cauchy の積分定理,複素級数,Laurent 展開,留数の定理) 必要な準備学習: これまでの講義を復習し理解しておくこと.
- 7. 偏微分方程式についての導入と二階線形偏微分方程式の性質 I 必要な準備学習:キーワードについて調査しておくこと.
- 8. 偏微分方程式についての導入と二階線形偏微分方程式の性質 II 必要な準備学習:キーワードについて調査 しておくこと.
- 9. 数学的道具 I(常微分方程式, Fourier 級数, Fourier 変換, Laplace 変換, Delta 関数) 必要な準備学習: 工業数学 I を復習しておくこと.
- 10. 数学的道具 II(常微分方程式,Fourier 級数,Fourier 変換,Laplace 変換,Delta 関数) 必要な準備学習: 工業数学 I を復習しておくこと.
- 11. 二階線形偏微分方程式の解法 I (波動方程式,拡散方程式,Laplace 方程式,Poisson 方程式,Green 関数) 必要な準備学習:解法手順について理解をしておくこと.
- 12. 二階線形偏微分方程式の解法 II(波動方程式,拡散方程式,Laplace 方程式,Poisson 方程式,Green 関数) 必要な準備学習:解法手順について理解をしておくこと.
- 13. 二階線形偏微分方程式の解法 III(波動方程式,拡散方程式,Laplace 方程式,Poisson 方程式,Green 関数) 必要な準備学習:解法手順について理解をしておくこと.
- 14. これまでの復習 I 必要な準備学習:講義全体 , 特に複素関数論の復習をしておくこと .
- 15. これまでの復習 II と非線形偏微分方程式の解法 (Burgers 方程式の解法) 必要な準備学習:講義全体 , 特に偏微分方程式論の復習をしておくこと .

16. 期末テスト 必要な準備学習:講義全体の復習をしておくこと.

[キーワード] Cauchy-Riemann の微分方程式,正則関数,複素関数の積分,Cauchy の積分定理,複素級数,Laurent 展開,留数の定理,波動方程式,拡散方程式,Laplace 方程式,Poisson 方程式,Burgers 方程式,Delta 関数,Laplace 変換,Green 関数,差分法

[教科書・参考書] 教科書は使用しないが,参考書等は必要に応じて講義の時間に紹介する.

[評価方法・基準] 期末テストを実施する.評価基準は,原則として,期末テストの結果において,60点以上を合格と する.自主的なレポート(任意)提出などは,評価として考慮する場合もある.

なお,工業数学 II の成績には,その年の数学統一試験(線形代数,微積分,常微分方程式)を受験している場合,その成績を加味することもある.

[関連科目] 線形代数学 B1,線形代数学 B2,微積分学 B1,微積分学 B2,微分方程式,工業数学 I

[履修要件] 原則として,線形代数学 B1,線形代数学 B2,微積分学 B1,微積分学 B2,微分方程式,および,工業数学 I を履修済みであること.

[備考] この科目は,機械コース学習・目標の「(B)事象の本質的理解と専門知識の応用(B-1)」の関連科目である.

T1Q027001

授業科目名: 流体力学演習 I

科目英訳名: Exercises in Fluid Mechanics I

担当教員 : 三神 史彦 単位数 : 10単位

単位数: 1.0 単位開講時限等: 2 年後期火曜 1 限隔週 1,3授業コード: T1Q027001講義室: エ 17 号棟 113 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 演習

[受入人数] 90 名

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要]機械工学科の学生を対象とした演習形式の授業である.流体力学Iの講義の内容の理解を深めるため,演習によって応用力と計算の感覚を養う.

[目的・目標] 演習問題を解くことによって流体力学の基本的な考え方についての理解を確実なものにし,応用する能力と計算力を身に付ける.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	粘性や圧縮性 , 表面張力などの流体の性質に関する問題を解けるようになる .	1	期末試験	10 %
2	重力場での静止流体の圧力分布や圧力計測に関する問題を解けるようになる.	2	期末試験	20 %
3	静止流体中の壁面に作用する力や浮力に関する問題を解けるようになる.	3	期末試験	10 %
4	渦やレイノルズ数など,流れの基礎に関する問題を解けるようになる.	4	期末試験	10 %
5	ベルヌーイの式の応用問題を解けるようになる.	5	期末試験	20 %
6	運動量の式の応用問題を解けるようになる.	6	期末試験	20 %
7	角運動量の式の応用問題を解けるようになる.	7	期末試験	10 %

[授業計画・授業内容] 流体力学 I の講義の進度に合わせて 7 回の演習を行う. 教科書, ノート, 関数電卓を持参すること.

- 1. 流体の性質に関する演習
- 2. 圧力の性質や圧力計測に関する演習
- 3. 壁面に作用する力や浮力に関する演習
- 4. 渦やレイノルズ数に関する演習
- 5. ベルヌーイの式の応用に関する演習
- 6. 運動量の式の応用に関する演習
- 7. 角運動量の式の応用に関する演習
- 8. 期末試験

[キーワード] 粘性,圧縮性,表面張力,圧力,渦,一次元流れ,連続の式,オイラーの運動方程式,ベルヌーイの式, 運動量の法則,角運動量の法則 [教科書・参考書] 教科書:大場謙吉・板東潔「流体の力学 現象とモデル化 」(コロナ社) ISBN978-4-339-04581-9 (流体力学 I でも使用する), 参考書:松尾一泰:「流体の力学 水力学と粘性・完全流体力学の基礎」(理工学社) ISBN978-4-8445-2157-0,日本機械学会:『JSME テキストシリーズ 流体力学』(丸善) ISBN978-4-88898-119-4

[評価方法・基準] 期末試験で60点以上であること.

[関連科目] 流体力学 I(p. 機械 24 T1Q022001)

[備考] この科目は,機械コース学習・教育目標の「(B) 事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-3) と「(C) 論理的な思考力」に関する具体的な達成内容 (C-1) を取り扱う.

T1Q028001

授業科目名: 非鉄金属材料

科目英訳名: Nonferrous materials

担当教員 : 浅沼博

単位数 : 2.0 単位 開講時限等: 2 年後期火曜 4 限 授業コード: T1Q028001 講義室 : 工 17 号棟 213 教室

科目区分

2010 年入学生: 専門選択必修 F20 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 80

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

- [授業概要] 非鉄金属材料を中心とした各種機械材料の特性、その発現のメカニズムと用途を中心に解説する。さらに、 最新の動向などにも触れ、将来を展望する。また、材料学への興味を喚起するため、日常生活などで興味がわいた 材料について調査、紹介して頂く。
- [目的・目標] 適材適所用いられている各種機械材料について、材料特性・機能とその発現のメカニズム、それらと用途との関連性について理解し、さらにこれらをベースに新たな用途開拓、さらには新たな材料開発への方向を示す力を身につける。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	材料特性とその発現のメカニズムについて説明できるようになる。	全週	試験	45 %
2	特性と用途の関連性について説明できるようになる。	全週	試験	45 %
3	有用な材料開発の方向を示すことができるようになる。	全週	試験	10 %

[授業計画・授業内容]

- 1. 機械材料概説
- 2. 構造材料と機能材料
- 3. アルミニウム・アルミニウム合金
- 4. アルミニウム・アルミニウム合金
- 5. 銅・銅合金、ニッケル・ニッケル合金
- 6. チタン・チタン合金、マグネシウム・マグネシウム合金
- 7. 亜鉛・亜鉛合金、低融点・高融点金属およびその合金
- 8. 金属間化合物、アモルファス
- 9. セラミックス
- 10. セラミックス
- 11. 高分子材料
- 12. 複合材料
- 13. 複合材料
- 14. 機能材料
- 15. スマートマテリアル
- 16. 試験

[キーワード] 構造・機能材料、金属・合金、セラミックス、複合材料、機能材料、スマートマテリアル

[教科書・参考書] 教科書:機械材料学(日本材料学会) 参考書:金属材料基礎工学(井形直弘、本橋嘉信、浅沼博著、 日刊工業新聞社)

[評価方法・基準] 試験

[履修要件] 材料科学、鉄鋼材料を理解しておくこと。

T1Q029001

授業科目名: 機械加工学

科目英訳名: Mechanical Machining

担当教員 : 森田 昇 : 2.0 単位 単位数

開講時限等: 3年前期水曜3限 授業コード: T1Q029001 : 工 17 号棟 112 教室 講義室

科目区分

2009 年入学生: 専門必修 F10 (**T1KD**:機械工学科 (先進科学) , **T1Q**:機械工学科)

[授業の方法] 講義

[受入人数] 90

[受講対象] 科目等履修生 履修可; 電子機械工学科2年次生,3年次生,4年次生,先進科学プログラム課程および他学科 や他学部で受講が認められた者

- [授業概要] 切削加工法は,機械加工の中で最も基本的な工作法のひとつである.講義では,まず切削加工法の原理と 実際を体系的に学ぶ.次に,機械加工の精密部品製造への適用の方法論を学習する.さらに,各種機械加工法の基 礎的事項を体系的に学習する.
- [目的・目標] 切削加工法の役割と歴史的変遷,機械加工の力学的基礎,切削理論,切削加工法の実際と被削性,各種 切削加工法と切削工具,切削加工機械ならびに精密加工への適用論について修得する.具体的な,達成目標は次の とおりである。1.機械加工の力学的基礎,金属の切削理論と切削現象が理解できる.2.切削加工における被削 性(切りくず形態,切削抵抗,切削温度,工具摩耗,加工面性状等)について理解できる.3.切削加工法の種類, 各種切削加工機械と切削工具について理解できる、4、機械加工の精密加工部品製造への適用論が修得できる、

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	機械加工の力学的基礎,金属の切削理論と切削現象を理解する.	1 , 2 , 3 , 4 , 5	小テスト,中間試験	30 %
2	切削加工における被削性(切りくず形態,切削抵抗,切削温度,工具摩耗,加工面性状等)について理解する.	5 , 6 , 7 , 8 , 9	小テスト,中間試験	2 5 %
3	切削加工法の種類,各種切削加工機械と切削工具について理解する.	9 , 1 0 , 1 1 , 1 2	小テスト,期末試験	2 5 %
4	機械加工の精密加工部品製造への適用論を修得する.	12,13,14, 15	小テスト,期末試験	20 %

- 1. 切削加工の役割と歴史的変遷,加工法の分類と切削加工の位置付け
- 2. 金属の切削理論(1)切削様式と切りくず形態の分類
- 3. 金属の切削理論(2)切りくず生成の力学と切りくず生成機構
- 4. 金属の切削理論(3) せん断角理論とせん断ひずみ,切削に特有な力学的環境
- 5. 金属の切削理論(4)切削抵抗とその要因,切削抵抗の解析法と測定法
- 6. 金属の切削理論(5)切削温度とその要因,切削温度の解析法と測定法
- 7. 切削加工の実際と被削性(1)切りくず形態と処理性
- 8. 中間まとめ
- 9. 切削加工の実際と被削性(2)切削工具の損耗機構と寿命,工具寿命の判定法
- 10. 切削加工の実際と被削性(3)仕上げ面性状とその要因,仕上げ面性状の評価法
- 11. 切削加工の実際と被削性(4)切削油剤の作用機構と種類
- 12. 切削加工法の種類旋削加工,フライス加工,穴あけ加工,ブローチ加工)と各種切削工具
- 13. 切削加工機の構成と自動化生産システム
- 14. 機械加工の精密部品製造への適用論 1
- 15. 機械加工の精密部品製造への適用論 2
- 16. 最終試験

[キーワード] 切削加工,切削工具,切削加工機,CIM/FMS/FA,生産システム,精密加工,機械加工,加工現象,加工面性状,工作機械

[教科書・参考書] 加工学基礎 (1) 基礎切削加工学,杉田忠彰,上田完次,稲村豊四郎,共立出版

[評価方法・基準] 評価方法は「目的・目標」に示した表の通りで、評価基準は小テストの合計点40%、中間・期末 テストの合計点60%を総合評価して60点以上を合格とする。

[関連科目] 精密加工学,塑性力学,塑性加工学,機械工学実習

[備考] この科目は、機械工学コースの学習目標の内、主に「(B)事象の本質的理解と専門知識の応用」および「(D)システムデザイン能力」に関する内容を取り扱う。

T1Q030001

授業科目名: 機械工学実験

科目英訳名: Experiment of Mechanical Engineering

担当教員 : 各教員

単位数 : 6.0 単位 開講時限等: 3 年通期木曜 3.4.5 限

授業コード: T1Q030001, T1Q030002, 講義室 : エ 15 号棟 110 教室, エ 17 号棟 214 教室, エ

17 号棟 215 教室, 工 15 号棟 110 教室, 工 17

号棟 214 教室, 工 17 号棟 215 教室, 工 15 号棟 110 教室, 工 17 号棟 214 教室, 工 17

7休 110 我主, 工 11 7休 214 我主 2体 015 数字

号棟 215 教室

科目区分

2009 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 実験

[受入人数] 原則として機械工学科学生

T1Q030003

- [授業概要] 約10名の班にわけ,機械工学における基礎的事項に関して1~2週単位で実験を行い,収集したデータを整理,考察し,報告書にまとめさせる.報告書については,講評を行い,不十分な点があれば指摘し,修正および再提出をさせる.
- [目的・目標] 専門科目の講義で学んだことについて,実際に自分の目で見、手で触れてみることにより理解を深め,これから講義で学ぶことについては,予備知識を得ることを目的とする.また,実験技術や報告書のまとめ方を学ぶことも重要な目的である.この科目を履修することにより,機械工学における基礎的事項に関する深い知識が得られるとともに,機械の設計や研究の方法を身につけることができる.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	手順通り実験を行い,情報技術などを利用して,データを収集,整理し,簡潔で要領を得た実験レポートを作成できる(B -2, B -4, E -2, F -2)	すべての週	レポート	60 %
2	正しい論理で文章を展開できる.自分の意見を明確に説明できる.資料を 提示することや具体例を用いるなどして自分の意見を支持できる.独自の アイディアを考え出すことができる(E-2)	すべての週	レポート	40 %

- [授業計画・授業内容] 「基礎実験」、「実験課題 1 金属の熱処理」、「実験課題 2 長柱の座屈と曲げ」、「実験課題 3 引張試験」、「実験課題 4 流れ」、「実験課題 5 エンジンと伝熱」、「実験課題 6 粘度と摩擦」、「実験課題 7 振動」、「実験課題 8 インターフェース」、「実験課題 9 制御」
 - 1. ガイダンスおよびレポートの書き方
 - 2. 基礎実験
 - 3. 実験課題1~9の中の一つを実施
 - 4. 実験課題1~9の中の一つを実施
 - 5. 実験課題1~9の中の一つを実施
 - 6. 実験課題1~9の中の一つを実施
 - 7. 実験課題1~9の中の一つを実施
 - 8. 実験課題1~9の中の一つを実施
 - 9. 実験課題1~9の中の一つを実施
 - 10. 実験課題1~9の中の一つを実施
 - 11. 実験課題1~9の中の一つを実施
 - 12. 実験課題1~9の中の一つを実施
 - 13. 実験課題1~9の中の一つを実施

- 14. 実験課題1~9の中の一つを実施
- 15. 実験課題1~9の中の一つを実施
- 16. 実験課題1~9の中の一つを実施
- 17. 実験課題1~9の中の一つを実施
- 18. 実験課題1~9の中の一つを実施
- 19. 実験課題1~9の中の一つを実施
- 20. 実験課題1~9の中の一つを実施
- 21. 実験課題1~9の中の一つを実施
- 22. 実験課題1~9の中の一つを実施
- 23. 実験課題1~9の中の一つを実施
- 24. 実験課題1~9の中の一つを実施
- 25. 実験課題1~9の中の一つを実施
- 26. 実験課題1~9の中の一つを実施
- 27. 実験課題1~9の中の一つを実施
- 28. 実験課題1~9の中の一つを実施
- 29. 実験課題1~9の中の一つを実施
- 30. 実験課題1~9の中の一つを実施

[教科書・参考書] ガイダンスで配布する冊子と千葉大学 moodle からダウンロードする実験書.

[評価方法・基準] 実験態度および実験レポートに基づいて評価する.基礎実験を含むすべての実験課題を実施し,すべてのレポートが合格点(60点以上)の場合に単位が取得できる.講評の後でレポートを再提出することができる.準備学習未実施,遅刻,レポート提出遅れは減点の対象となる.

[関連科目] すべての専門科目

[備考] 学習教育目標の「(B) 事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-2)と(B-4)「(E) 自己表現」に関する具体的な達成内容 (E-2)「(F)柔軟な思考力と計画的アプローチ」に関する具体的な達成内容 (F-2)を取り扱う.

T1Q031001

授業科目名: 機械製図基礎

科目英訳名: Fundamentals of Mechanical Drawing

担当教員 : 小林 謙一, 大森 達夫

単位数: 2.0 単位開講時限等: 3 年前期水曜 4,5 限授業コード: T1Q031001, T1Q031002講義室: エ 17 号棟 214 教室

科目区分

2009 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義・実習

[受入人数] 45 名

[受講対象] 工学部機械工学科3年生,4年生のみを対象とする。

[授業概要]機械製図のルールである関連規格と,投影図法の基礎について解説する。第三角法の基本を十分に説明し,受講者は部品図、組立図の製図法を,実習を通して習得する。また,機器の設計にあたっての留意点を説明し,受講者は製図器具,製図機及び CAD を利用して簡単な図面を描き,それらの基本操作を習得する。

[目的・目標] 機械製図に関連する JIS 規格と投影図法の基礎について習得する.また機械製品の設計における考え方を学習し,それらの部品図及び組立図を製図機や CAD を利用して描くことにより,製図機と CAD の基本操作を習得する。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	「課題 $1:$ 品物から図面」、「課題 $2:$ 図面から品物」、「課題 $3:$ フランジ」により,立体形状と二次元の紙面に投影した図面を対応させて描くことができるようになる(機 $C-1$,機 $D-1$)。	1, 2, 3, 4, 5, 6	作図した図面	20 %
2	「課題 $4:$ ボルト製図」により,機械要素として最も基本となるねじ部品を描き,製図規格を習得するとともに,基本的な寸法記入ができるようになる(機 C -1,機 D -1 $)$ 。	1, 2, 3, 4, 5, 6, 7, 8	作図した図面	20 %
3	「課題 $5:$ クラッチ製図」により,組立図を描くことができるようになる (機 $\mathrm{C-1}$,機 $\mathrm{D-1}$)。	1, 2, 3, 4, 5, 9, 10, 11	作図した図面	20 %
4	「課題 6 : 軸受製図」により,簡単な設計変更を行うことができるようになる(機 C -1,機 D -1 $)。$	$1, 2, 3, 4, 5, \\12, 13, 14, 15$	作図した図面	20 %
5	「 CAD : 歯車製図」、 CAD : エンブレム」により, CAD の概念を理解し,簡単な図面を CAD により,描くことができるようになる。(機 $\mathrm{C-1}$,機 $\mathrm{D-1}$)。	6, 7, 8, 9, 10, 11, 12, 13, 14, 15	作図した図面	20 %

- 1. 機械製図の意義,設計製図の説明:投影図法,製作図の描き方。本授業が関連する科目の中で占める位置,目的,取扱う範囲について述べる。本授業を受講する上での注意事項(課題は全回数,提出しなければならないこと。課題を全て提出しても単位取得できない場合もあることなど。)についての説明も行う。これらについて述べた後,工業製品の企画・立案から製作までの流れにおいて,設計製図の意義について述べる。機械設計において,環境負荷の低減や安全を自覚することが重要であることを認識する。
- 2. 機械製図(線の太さ,投影法,第三角法)の説明,製図実習「課題1:品物から図面」:三次元物体を二次元の紙面上に表すために,投影法について学ぶ。投影法の中でも,日本工業規格の機械製図に用いられる第三角法について説明を行う。これらについて講述したのち,課題1:品物から図面」により,三次元形状の立体図から紙面上に二次元の三面図を描く。
- 3. 機械製図(断面法の基礎,等角投影法)の説明,製図実習「課題2:図面から品物」:前回に引き続き,第三角法について説明を行う。その中でも,断面を描く場合に便利な断面法について,その基礎的な事柄の説明を行う。次に,立体図を描くための等角投影法について説明する。これらについて講述したのち,課題2:図面から品物」により,三面図から立体図を描く。
- 4. 機械製図(断面法の応用,省略法,検図方法)の説明,課題1,2の検図:前回に引き続き,断面法について, その応用に関する説明を行う。次に,描いた図面を検査する,検図方法について説明した後,課題1,2の検 図を学生相互に行う。
- 5. 機械製図(寸法記入法)の説明,製図実習「課題3:フランジ製図」:図面中で部品の寸法を示すための寸法記入法についての説明を行う。説明後「課題3:フランジ製図」を行う。これまでに説明を行った,第三角法,断面法,寸法記入法に従って描く。
- 6. ボルト製図, CAD, 製図用機器(ドラフター)の説明, 製図実習「課題4:ボルト製図」: 課題4に関する説明を行った後,全体を2グループに分けて,一方のグループには製図機器の使用方法の説明を行い,その後,「課題4:ボルト製図」の実習を行う。他方のグループには,CADの使用方法の説明を行い,説明内容に関して実習を行う。これまでの授業で説明を行い,実習を行った機械製図について,さらに習熟することを目的としている。ボルト製図は製図機器によって描く。ボルト製図では,機械要素として最も基本となるねじ部品を描くことにより,製図規格を習得するとともに,表面粗さ,面の肌の指示方法についても説明する。必要以上の表面粗さを指示すると,余分な加工工程を必要としてしまうことも述べる。
- 7. CAD 実習「歯車製図」の説明, CAD, 製図実習「課題 4:ボルト製図」,: 歯車製図について説明を行う. 前回, CAD を行ったグループには製図機器の使用方法の説明を行い, その後, 課題 4:ボルト製図」の実習を行う。他方のグループには, CAD の使用方法の説明を行い, 説明内容に関して実習を行う。
- 8. 製図実習「課題 4: ボルト製図」, CAD 実習「歯車製図」: 全体の授業時間を 2 つに分け,全員が課題 4 と CAD 実習を 1 時限ずつ行う。
- 9. 製図実習「課題 5:クラッチ製図」, CAD 実習「歯車製図」: かみあいクラッチについて説明を行った後,前回までと同様に全体を 2 グループに分ける。一方のグループは製図実習「課題 5:クラッチ製図」を行う. 他方のグループは CAD 実習「歯車製図」を行う。クラッチ製図では,これまでの機械製図に加え,組立図について学ぶ。さらに公差に関する説明も行い,必要以上の公差を指示すると,余分な加工工程を必要としてしまうことも述べる。
- 10. CAD 実習「エンブレム」の説明,製図実習「課題 5: 0 クラッチ製図」,CAD 実習「歯車製図」:CAD により,エンプレムを作図し,第 4 セメスタの電子機械工学実習におけるワイヤ放電加工機の実習で製作することを述べる。前回,CAD 実習「歯車製図」を行ったグループは「課題 5: 0 クラッチ製図」を行ったグループは CAD 実習「歯車製図」を行う。
- 11. 製図実習「課題 5: クラッチ製図」, CAD 実習「歯車製図」: 全体の授業時間を 2 つに分け,全員が課題 5 と CAD 実習を 1 時限ずつ行う。

- 12. 製図実習「課題 6: 軸受製図」, CAD 実習「エンブレム」:「課題 6: 軸受製図」の説明を行う。課題 6 を製図 用機器で描く学生は製図室で実習を行う。課題 6 を CAD で描く学生は CAD 室で実習を行う。
- 13. 製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」: 前回に引き続き,製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」の作図を行う。
- 14. 製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」: 前回に引き続き,製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」の作図を行う。
- 15. 製図実習課題の返却: 製図実習課題は,各回の授業において,適宜,返却する。最終回までに返却しなかった課題を返却し,解答の確認を行うと共に,理解不十分な点について,再学習への糸口を解説する。

[キーワード] JIS規格,製図,三角法,СAD

[教科書・参考書] 教科書:吉澤武男編著「新編JIS機械製図」森北出版

[評価方法・基準] 評価方法は [目的・目標] に示した表の通りである。4 回欠席した時点で,受講資格を失う。欠席回数が3回以下でも,1 回欠席するごとに5点,減点する。単位取得のためには,全ての製図課題を提出していることが必要である。製図課題は一度,提出した後,教員側で修正事項を図面に記入する。受講者は,修正事項を元に訂正した図面を再提出する。最終的な採点は,再提出した図面によって行う。図面の未完成,提出遅れは,それぞれの課題の10%に相当する点数を減点する。採点した図面は適宜,返却する。評価基準は,総合点が60点以上を合格とする。

[関連科目] 機械運動学,機械要素,機械設計製図,電子機械工学実習

[履修要件] 機械要素を履修していることが望ましい。

[備考] この科目は,機械工学コース学習教育目標の「(C) 論理的な思考力」に関する具体的な達成内容 (C-1) と「(D) システムデザイン能力」に関する具体的な達成内容 (D-1) を取り扱う。

T1Q031003

授業科目名:機械製図基礎

科目英訳名: Fundamentals of Mechanical Drawing

担当教員 : 樋口 静一

単位数 : 2.0 単位 開講時限等: 3 年前期金曜 4,5 限 授業コード: T1Q031003, T1Q031004 講義室 : エ 17 号棟 112 教室

科目区分

2009 年入学生: 専門必修 F10(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義・実習

[受入人数] 45 名

[受講対象] 電子機械工学科3年生,4年生のみを対象とする。

[授業概要] 機械製図のルールである関連規格と,投影図法の基礎について解説する。第三角法の基本を十分に説明し,受講者は部品図、組立図の製図法を,実習を通して習得する。また,機器の設計にあたっての留意点を説明し,受講者は製図器具,製図機及び CAD を利用して簡単な図面を描き,それらの基本操作を習得する。

[目的・目標] 機械製図に関連する JIS 規格と投影図法の基礎について習得する.また機械製品の設計における考え方を学習し,それらの部品図及び組立図を製図機や CAD を利用して描くことにより,製図機と CAD の基本操作を習得する。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	「課題 $1:$ 品物から図面」、「課題 $2:$ 図面から品物」、「課題 $3:$ フランジ」により,立体形状と二次元の紙面に投影した図面を対応させて描くことができるようになる(機 $C-1$,機 $D-1$)。	1, 2, 3, 4, 5, 6	作図した図面	20 %
2	「課題 $4:$ ボルト製図」により,機械要素として最も基本となるねじ部品を描き,製図規格を習得するとともに,基本的な寸法記入ができるようになる(機 C -1,機 D -1 $)$ 。	1, 2, 3, 4, 5, 6, 7, 8	作図した図面	20 %
3	「課題 $5:$ クラッチ製図」により,組立図を描くことができるようになる (機 $\mathrm{C} ext{-}1$,機 $\mathrm{D} ext{-}1$)。	1, 2, 3, 4, 5, 9, 10, 11	作図した図面	20 %
4	「課題 6 : 軸受製図」により,簡単な設計変更を行うことができるようになる(機 C -1,機 D -1。	1, 2, 3, 4, 5, 12, 13, 14, 15	作図した図面	20 %
5	「 CAD : 歯車製図」、 CAD : エンブレム」により, CAD の概念を理解し,簡単な図面を CAD により,描くことができるようになる。(機 $\mathrm{C-1}$,機 $\mathrm{D-1}$)。	6, 7, 8, 9, 10, 11, 12, 13, 14, 15	作図した図面	20 %

- 1. 機械製図の意義,設計製図の説明:投影図法,製作図の描き方。本授業が関連する科目の中で占める位置,目的,取扱う範囲について述べる。本授業を受講する上での注意事項(課題は全回数,提出しなければならないこと。課題を全て提出しても単位取得できない場合もあることなど。)についての説明も行う。これらについて述べた後,工業製品の企画・立案から製作までの流れにおいて,設計製図の意義について述べる。機械設計において,環境負荷の低減や安全を自覚することが重要であることを認識する。
- 2. 機械製図(線の太さ,投影法,第三角法)の説明,製図実習「課題1:品物から図面」:三次元物体を二次元の紙面上に表すために,投影法について学ぶ。投影法の中でも,日本工業規格の機械製図に用いられる第三角法について説明を行う。これらについて講述したのち,課題1:品物から図面」により,三次元形状の立体図から紙面上に二次元の三面図を描く。
- 3. 機械製図(断面法の基礎,等角投影法)の説明,製図実習「課題2:図面から品物」:前回に引き続き,第三角法について説明を行う。その中でも,断面を描く場合に便利な断面法について,その基礎的な事柄の説明を行う。次に,立体図を描くための等角投影法について説明する。これらについて講述したのち,課題2:図面から品物」により,三面図から立体図を描く。
- 4. 機械製図(断面法の応用,省略法,検図方法)の説明,課題1,2の検図:前回に引き続き,断面法について, その応用に関する説明を行う。次に,描いた図面を検査する,検図方法について説明した後,課題1,2の検 図を学生相互に行う。
- 5. 機械製図(寸法記入法)の説明,製図実習「課題3:フランジ製図」:図面中で部品の寸法を示すための寸法記入法についての説明を行う。説明後「課題3:フランジ製図」を行う。これまでに説明を行った,第三角法,断面法,寸法記入法に従って描く。
- 6. ボルト製図, CAD, 製図用機器(ドラフター)の説明, 製図実習「課題4:ボルト製図」: 課題4に関する説明を行った後,全体を2グループに分けて,一方のグループには製図機器の使用方法の説明を行い,その後,「課題4:ボルト製図」の実習を行う。他方のグループには,CADの使用方法の説明を行い,説明内容に関して実習を行う。これまでの授業で説明を行い,実習を行った機械製図について,さらに習熟することを目的としている。ボルト製図は製図機器によって描く。ボルト製図では,機械要素として最も基本となるねじ部品を描くことにより,製図規格を習得するとともに,表面粗さ,面の肌の指示方法についても説明する。必要以上の表面粗さを指示すると,余分な加工工程を必要としてしまうことも述べる。
- 7. CAD 実習「歯車製図」の説明, CAD, 製図実習「課題4:ボルト製図」,: 歯車製図について説明を行う. 前回, CAD を行ったグループには製図機器の使用方法の説明を行い, その後, 課題4:ボルト製図」の実習を行う。他方のグループには, CADの使用方法の説明を行い, 説明内容に関して実習を行う。
- 8. 製図実習「課題 4: ボルト製図」, CAD 実習「歯車製図」: 全体の授業時間を 2 つに分け,全員が課題 4 と CAD 実習を 1 時限ずつ行う。
- 9. 製図実習「課題 5: クラッチ製図」, CAD 実習「歯車製図」: かみあいクラッチについて説明を行った後,前回までと同様に全体を 2 グループに分ける。一方のグループは製図実習「課題 5: クラッチ製図」を行う. 他方のグループは CAD 実習「歯車製図」を行う。クラッチ製図では,これまでの機械製図に加え,組立図について学ぶ。さらに公差に関する説明も行い,必要以上の公差を指示すると,余分な加工工程を必要としてしまうことも述べる。
- 10. CAD 実習「エンブレム」の説明,製図実習「課題 5: クラッチ製図」, CAD 実習「歯車製図」: CAD により,エンプレムを作図し,第 4 セメスタの電子機械工学実習におけるワイヤ放電加工機の実習で製作することを述べる。前回,CAD 実習「歯車製図」を行ったグループは「課題 5: クラッチ製図」を行う。前回,課題 5: クラッチ製図」を行ったグループは CAD 実習「歯車製図」を行う。
- 11. 製図実習「課題 5: クラッチ製図」, CAD 実習「歯車製図」: 全体の授業時間を 2 つに分け, 全員が課題 5 と CAD 実習を 1 時限ずつ行う。
- 12. 製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」:「課題 6:軸受製図」の説明を行う。課題 6を製図 用機器で描く学生は製図室で実習を行う。課題 6を CAD で描く学生は CAD 室で実習を行う。
- 13. 製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」: 前回に引き続き,製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」の作図を行う。
- 14. 製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」: 前回に引き続き,製図実習「課題 6:軸受製図」, CAD 実習「エンブレム」の作図を行う。
- 15. 製図実習課題の返却:製図実習課題は,各回の授業において,適宜,返却する。最終回までに返却しなかった課題を返却し,解答の確認を行うと共に,理解不十分な点について,再学習への糸口を解説する。

[キーワード] JIS規格,製図,三角法,CAD

[教科書・参考書] 教科書:吉澤武男編著「新編JIS機械製図」森北出版

[評価方法・基準] 評価方法は [目的・目標]に示した表の通りである。4回欠席した時点で,受講資格を失う。欠席回数が3回以下でも,1回欠席するごとに5点,減点する。単位取得のためには,全ての製図課題を提出していることが必要である。製図課題は一度,提出した後,教員側で修正事項を図面に記入する。受講者は,修正事項を元に

訂正した図面を再提出する。最終的な採点は,再提出した図面によって行う。図面の未完成,提出遅れは,それぞれの課題の 10 %に相当する点数を減点する。採点した図面は適宜,返却する。評価基準は,総合点が 60 点以上を合格とする。

[関連科目] 機械運動学,設計基礎論,機械設計製図,機械工学実習

[履修要件] 設計基礎論を履修していることが望ましい。

[備考] この科目は,機械工学コース学習教育目標の「(C) 論理的な思考力」に関する具体的な達成内容 (C-1) と「(D) システムデザイン能力」に関する具体的な達成内容 (D-1) を取り扱う。

T1Q032001

授業科目名: 流体力学 II

科目英訳名: Fluid Mechanics II 担当教員: 劉浩,前野一夫

単位数: 2.0 単位開講時限等: 3 年前期火曜 3 限授業コード: T1Q032001講義室: エ 17 号棟 214 教室

科目区分

2009 年入学生: 専門必修 F10 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 100

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可; 電子機械工学科 2 年生、先進科学プログラム課程および他学科学生で受講が認められた者。

[授業概要] 流体現象の記述と基礎方程式、理想流体の速度ポテンシャルと流れ関数、粘性流体の層流と乱流の諸特性、 ナビエ・ストークス方程式の解析例、境界層解析の基礎など、流体力学の基礎的事項を体系的に学習する。

[目的・目標] 自然科学の基礎となる、流体現象の数学的記述や解析および工学的側面について理解する。具体的には典型的な基礎方程式に関していくつかの簡単な解析解を例に挙げることもでき、物理的な現象の理解を目的としながら、速度ポテンシャルや流れ関数、渦や循環、境界層や摩擦力、層流や乱流、揚力や抗力などの流体力学の基礎的な事項を説明できようになる。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	非粘性理想流体において: 渦度: $\cot V = 0$ (速度ベクトルV) すなわち渦度なしの流れ=ポテンシャル流れをあつかい、 基本的な流れが簡単な関数であらわせること、またそれらの重ね合わせが円柱周りの流れ を表せることも理解できるようになる。 $(B-3)$	1, 2, 3, 4	中間試験,期末試験	20,10 %
2	物体まわりの循環(速度の全周積分)を導入し、円柱ー平板間の写像関係により 循環から平板の揚力が決定でき、楕円翼などの揚力特性を表せることが 理解できるようになる。(B-3)	5, 6, 7, 8	中間試験,期末試験	20,10 %
3	ナビエ・ストークス方程式の解析例を通して、流体現象の数学的記述と基礎方程式の解析や物理現象を理解する。(B-3)	9, 10, 11	期末試験	20 %
4	物体まわりの境界層や摩擦力、境界層理論の基礎について理解する。(B-3)	12, 13, 14, 15	期末試験	20 %

[授業計画・授業内容] 非粘性理想流体:ポテンシャル流れ:円柱周り、かどを回る流れ、循環(速度の全周積分),円柱ー平板間の写像関係により平板の揚力が決定でき、楕円翼などの揚力特性、摩擦係数・抗力係数。粘性流体:レイノルズ数,層流と乱流,低レイノルズ数の流れ。ナビエ・ストークス方程式、平行平板間の流れ,クェットの流れ,円管内の流れ(ポアズイユの流れ)境界層の解析,剥離,カルマン渦列。

- 1. 流体現象の数学的記述と基礎方程式の解析について概説する。渦度: ${
 m rot}\ V=0\ (速度ベクトルV)$ のポテンシャル流れの導入について理解する
- 2. 複素ポテンシアル、速度ポテンシアル、複素速度を応用し基本的な流れたとえば一様流、斜めの一様流れを簡単な関数で表すことについて理解する
- 3. わきだし、吸い込み、渦糸について理解する
- 4. 円柱周り(ポテンシアル解の重ね合わせ)やかどを回る流れ、回転円柱について理解する。
- 5. 循環(速度の全周積分)の導入について理解し、工学的応用のため流体力の算出の手順を知る。
- 6. 物体表面圧力から複素ポテンシアルを経てブラジウスの定理で力を算出する。クッタの条件について理解する。
- 7. 円柱ー平板間の写像関係、。平板の揚力、回転円柱の揚力、ビオサヴァールの法則と楕円翼の揚力特性、抗力係数について理解する
- 8. 前半、円柱に働く力の関係、揚力や抗力の意義などを演習を通して理解する。 後半、中間試験
- 9. ニュートン流体、ナビエ・ストークス方程式、レイノルズ数などを理解する。

- 10. ナビエ・ストークス方程式の、平行平板間の流れやクェットの流れへの適用と解析を通して、物理的現象を理解する。
- 11. 流速と流体内応力の関係を知り、ナビエ・ストークス方程式にどう反映されるか理解する。
- 12. 円管内の流れ(ポアズイユの流れ)、レイリ の流れ、振動平板間の流れについても、ナビエ・ストークス方程式の解析や演習を通して理解する。
- 13. 物体近傍にできる境界層の現象、境界層理論の基礎方程式について理解する。
- 14. 境界層の解析のいくつかの方法、平板境界層や円柱と球まわりの境界層の形成と特質を理解する。
- 15. 円柱まわりの流れの剥離やカルマン渦列と物体に働く力の関係、さらに乱流について理解する。
- 16. 試験

[キーワード] レイノルズ数、層流、乱流、境界層、流れの剥離、抵抗、ポテンシャル流れ、渦度

[教科書・参考書] [教科書] 流体の力学 - 現象とモデル化 (コロナ社。4 セメスタの流体力学 I と同じ) 適宜、プリント配布。

[評価方法・基準] 中間試験 (40 %) 期末試験 (60 %) 合わせて 100 点満点で評価する。単位を取得するためには、総合評点が 60 点以上であること。

[関連科目] 流体力学 I, 流体力学演習 I, II

[履修要件] 流体力学 I、流体力学演習 I を履修していることがのぞましい。

T1Q033001

授業科目名: 機械振動学

科目英訳名: Mechanical Vibration

担当教員 : 野波 健藏

単位数 : 2.0 単位 開講時限等: 3 年前期金曜 3 限 授業コード: T1Q033001 講義室 : 工 17 号棟 214 教室

科目区分

2009 年入学生: 専門必修 F10 (**T1KD**:機械工学科 (先進科学) , **T1Q**:機械工学科)

[授業の方法] 講義

[受入人数] 50 名程度

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可; 物理学 BI 力学入門 1, 物理学 BII 力学入門 2,解析力学 I を履修した者,電子機械工学科 3年生

[授業概要] 単純な一自由度振動系を対象とする自由振動,過渡振動,強制振動などの振動学の基礎,周波数応答,モード解析による多自由度振動系の応答解析方法を講義する.

[目的・目標] 動力学である振動学を学び,1自由度系から多自由度系についてその応答計算方法,解析方法など振動学全般について習得することを目的とし,応用まで含めた振動問題について学ぶ.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み		
1	1 自由度減衰系の自由振動,1 自由度振動系の強制振動について学び,そ の計算手法を習得する.機(B - 1)	1, 2, 3, 4, 5	中間試験	40 %		
2	振動の絶縁について理解する.機(B-3)	6	中間試験	10 %		
3	2 自由度振動系のモード解析について学び,その計算手法を習得する.さらに,不減衰動吸振器の原理を理解する.機(B-3)	9, 10, 11	期末試験	30 %		
4	一般化された多自由度振動系のモード解析について学び,その計算手法を 理解する.機(B-1),機(B-3)	12, 13	期末試験	20 %		

[授業計画・授業内容] 1 自由度振動系の時間応答,周波数応答について講義し,振動の伝達率,絶縁方法などを解説する.さらに2自由度振動系,多自由度振動系のモード解析を講義し,動吸振器の原理や固有振動数,固有モードの概念を解説する.

- 1. 運動の微分方程式
- 2. 1自由度減衰系の自由振動
- 3. 固有振動数,対数減衰率
- 4. 1自由度振動系の強制振動
- 5. ラプラス変換による系の応答
- 6. 振動の絶縁
- 7. 中間試験

- 8. 中間試験の解説と評価
- 9. 2 自由度振動系のモード解析(1)
- 10. 2自由度振動系のモード解析(2)
- 11. 不減衰動吸振器
- 12. 多自由度振動系のモード解析
- 13. 多自由度振動系の応答(1)
- 14. 多自由度振動系の応答(2)
- 15. 期末試験

[キーワード] 振動系,固有振動数,過渡応答と定常応答,周波数応答,多自由度振動系,モード解析

[教科書・参考書] 理工学海外名著シリ・ズ電子計算機活用のための振動解析の理論と応用 (上) ISBN:4892410438 L . マイロヴィッチ 砂川惠訳ブレイン図書出版 (丸善) 1984/10 出版

[評価方法・基準] 中間試験1:期末試験1の成績により評価する

[関連科目] 力学入門 I、II、解析力学 I

[履修要件] 力学入門 I、II、解析力学 I を履修しておくことが望ましい。

[備考] 機(B-1),機(B-3)

T1Q034001

授業科目名: 塑性力学

科目英訳名: Mechanics of plasticity

担当教員 : 小山 秀夫 単位数 : 2.0 単位

単位数 : 2.0 単位 開講時限等: 3 年前期月曜 3 限 授業コード: T1Q034001 講義室 : 工 17 号棟 112 教室

科目区分

2009 年入学生: 専門必修 F10 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 80

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[授業概要]機械の設計や材料の成形加工の際に必要な塑性力学について,各種の単純な変形から降伏条件までの基礎的な考え方を中心に講義する。また,できるだけ身のまわりにある製品の設計や作り方を例に,理論の応用についても講義する。

[目的・目標] 近年、材料の成形加工や機械の設計・開発の際には大きな塑性変形を考慮しなければならない場合が多くなっており、機械の設計開発や研究に携わる者には、塑性力学を理解しそれを駆使することは重要となっている。そこで本講義では、材料の塑性変形領域での力学的性質を理解し、様々な塑性変形挙動に対する問題の基礎的解法を学び、さらに塑性変形に関する諸理論を学ぶことにより、高度な展開にも対処できる基礎学力を身につけることを目的とする。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	材料の塑性変形領域での力学的性質を理論的に説明できる	1, 2	中間試験	10 %
2	塑性変形挙動の基礎となる,引張と圧縮に関する基本的な不静定問題を解 くことができる	3, 4	中間試験	10 %
3	引張と圧縮変形を基礎として,曲げ変形を理論的に理解できる	5, 6, 7	中間試験	15 %
4	せん断変形を基礎として,ねじり変形を理論的に理解できる	7, 9, 10	中間試験	15 %
5	塑性変形開始の条件について,理論的に理解できる	11, 12, 13	期末試験	20 %
6	各種降伏条件について,それぞれの特徴を説明できる	12, 13, 14, 16	期末試験	20 %
7	実際の工業製品の製造に,塑性変形を利用する際の留意点について説明できる $(F-3)$	1, 2, 5, 7, 11, 16	期末試験	10 %

[授業計画・授業内容] *今年度(2011)は,以下の予定を15週に圧縮して講義する予定である.

- 1. 塑性の定義と塑性力学の立場についての概説
- 2. 基本的な引張と圧縮の応力とひずみ、降伏応力、加工硬化、応力 ひずみ曲線の近似式、変形仕事、残留応力
- 3. 簡単な不静定問題(1)つりあい条件とひずみの適合条件、弾性及び弾塑性負荷経路
- 4. 簡単な不静定問題(2)塑性負荷経路と極限状態及び除荷過程について
- 5. 曲げ変形の基礎的な考え方、均等曲げ,曲げモーメント、中立軸,塑性域の進展について

- 6. 曲げ中立軸が移動する場合,単純支持はりの曲げ,残留応力とスプリングバック
- 7. 曲げ変形とせん断変形の類似, せん断変形とねじり変形の基礎, 薄肉円管のねじり
- 8. 中間試験(期日は変更する場合がある)
- 9. 中間試験の総評と解説,中実円管のねじり
- 10. ねじりにおける変形仕事,バウシンガー効果
- 11. 塑性変形開始の条件,塑性変形に対する応力成分とひずみ成分の記述
- 12. 最大せん断応力説(トレスカの条件)
- 13. 八面体せん断応力説(ミーゼスの条件)
- 14. 3 軸応力下の降伏曲面と 平面,相当応力,ひずみ速度,全ひずみ理論とひずみ増分理論
- 15. 期末試験
- 16. 期末試験の講評,塑性理論の加工への適用

[キーワード] 塑性、弾性、力学、材料加工、変形,降伏条件

[教科書・参考書] 「改訂工業塑性力学」益田森治・室田忠雄著、養賢堂

[評価方法・基準] 中間試験と期末試験の合計点が 6 割以上の場合に合格とする

[関連科目] 材料力学 I(p. 機械 11 T1Q012001) , 材料力学 II(p. 機械 22 T1Q021001) , 塑性加工 (p. 機械 52 T1Q042001)

[履修要件] 材料力学 (I・II) を履修していること。

[備考] この科目は「機械系学習目標と関連科目の流れ」のうち (F)柔軟な思考力と計画的アプローチに関連した科目である

T1Q035001

授業科目名: 伝熱工学

[専門科目共通化科目]

科目英訳名: Engineering Heat Transfer

担当教員 : 前野 一夫

単位数: 2.0 単位開講時限等: 3 年前期月曜 4 限授業コード: T1Q035001講義室: 工 17 号棟 213 教室

科目区分

2009 年入学生: 専門選択必修 F20(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義・演習

[受入人数] 概ね80人以下

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 工業機械の温度分布,伝熱量などの熱的性能の解析や理解,及び,機器の熱設計に必用な伝熱工学の基礎的 事項について講義する.

[目的・目標] 伝熱工学の基礎的事項である「熱伝導」「対流伝熱」「熱放射と放射伝熱」の基礎的な概念の理解と,重要用語の理解,基礎方程式の物理的意味の説明ができるようにする.また,基礎的な熱伝導問題,対流熱伝達問題,放射伝熱問題の計算ができるようにする.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	伝熱工学の基礎概念と重要用語の意味を理解し,説明できるようになる	$1, 2, 3, 6, 9, \\10, 13, 14$	中間試験,期末試験	10 %
2	熱伝導に係る基礎的事項に係る意味を理解し,基礎的問題に対して温度分布,熱流束分布を計算によって求めることができるようになる.	3, 4, 5	中間試験	30 %
3	熱交換器の伝熱に係る基礎的な意味を理解し,基礎的問題に対して「熱通 過率」「交換熱量」を計算できるようになる.	6, 7	中間試験	10 %
4	対流熱伝達に係る基礎的事項の意味を理解し,基礎的問題に対して,熱伝 達率,伝熱量,伝熱面温度の計算ができるようなる.	9, 10, 11, 12	期末試験	30 %
5	熟放射と放射伝熱に係る基礎的事項の意味を理解し,基礎的問題に対して, 形態係数,伝熱量の計算ができるようになる.	13, 14	期末試験	20 %

[授業計画・授業内容] 講義全体を「伝熱工学の役割」「熱伝導」「対流伝熱」「熱放射と放射伝熱」の講義,及び「中間試験」と「期末試験」で構成し,伝熱工学の基礎的な概念と,重要用語の意味,及び,基礎方程式の導出方法と物理的意味について説明する.また,基礎的な熱伝導問題,対流熱伝達問題,放射伝熱問題の計算方法について説明する「中間試験」と「期末試験」で達成度を評価する.

1. 伝熱工学が工業機器の熱設計にとって不可欠な知識であること伝熱工学の応用例をあげて説明する.また,熱の熱の伝わり方の基本的な3形式「熱伝導」,「熱伝達」,「熱放射」の特徴と相違点を理解させる.

- 2. 熱伝導 その1 熱伝導に関する基礎事項である「温度場」「熱流束」「フーリエの法則」「熱伝導率」について理解させる.
- 3. 熱伝導 その2 熱伝導の基礎式である「熱伝導方程式」の導出方法とその物理的意味を理解させる.次に, 最も基礎的な問題である「平行平板の1次元定常熱伝導問題」に熱伝導方程式を適用して,温度分布の求め 方を理解させるとともに,フーリエの法則を利用して熱流束分布の求め方を理解させる.
- 4. 熱伝導 その3 熱伝導方程式を「円柱及び球内の1次元定常熱伝導問題」に適用し,円柱及び球の温度分布の求め方を理解させる.また,フーリエの法則を用いて熱流束分布の求め方を理解させる.
- 5. 熱伝導 その4 非定常熱伝導現象の基礎的事項を理解させるとともに,平行平板内の1次元非定常温度場を,数値計算法等により求める方法を理解させる.
- 6. 熱交換器 その1 熱交換器における伝熱を理解する上で重要な熱通過の考え方を理解させる.さらに,熱 交換器内における熱媒体の温度分布,熱交換器の温度効率の求め方を理解させる.
- 7. 熱交換器 その2 熱交換器における伝熱を理解する上で重要な熱通過の考え方を理解させる.さらに,熱交換器内における熱媒体の温度分布,熱交換器の温度効率の求め方を理解させる.
- 8. 中間試験
- 9. 対流熱伝達ーその1-対流伝熱の基礎的事項(速度境界層,温度境界層,強制対流伝熱,自然対流伝熱,平均熱伝達率,局所熱伝達率)について理解させるとともに,対流伝熱を支配する重要な無次元数(レイノルズ数,プラントル数,ヌッセルト数)を理解させる.
- 10. 対流熱伝達 その2 強制対流熱伝達の基礎式である境界層方程式(質量保存の式,運動量保存の式,エネルギー保存の式)の導出方法と境界層方程式の解析例について理解させる.
- 11. 対流熱伝達 その3 強制対流熱伝達率,自然対流熱伝達率の整理式の実験式の利用方法を理解させるとともに,次元解析による実験式の求め方を理解させる.
- 12. 対流熱伝達 その4 強制対流熱伝達率,自然対流熱伝達率の整理式の実験式の利用方法を理解させるとともに,次元解析による実験式の求め方を理解させる.
- 13. 熱放射と放射伝熱 その 1 放射伝熱の概念,熱放射の基本法則(プランクの法則,ウイーンの法則,ステファン・ボルツマンの法則,キルヒホッフの法則),熱放射の基礎事項(黒体放射,灰色体放射,物質の放射率・吸収率・反射率)を理解させる.
- 14. 熱放射と放射伝熱 その2 ランバートの法則,放射強さ,形態係数について説明し,簡単な黒体2面間の放射伝熱の計算方法を理解させる.
- 15. 相変化を伴う伝熱現象や伝熱工学の産業・宇宙などへの応用についての概説
- 16. 期末試験

[キーワード] 熱設計,熱伝導,対流伝熱,熱放射と放射伝熱,熱交換器,機器の伝熱,エネルギーの流れ

[教科書・参考書] 「伝熱工学」一式尚次 北山直方著 森北出版

[評価方法・基準] 出席 / 演習、中間試験(50%)と期末試験(50%)で評価する.中間・期末試験はそれぞれ 100 点満点ある.単位を取得するためには,中間試験と期末試験の両者を受験するとともに,両試験の加重平均が 60 点以上であることが必要である.

[備考] 千葉工大との単位互換科目

T1Q036001

授業科目名: 数値計算法

科目英訳名: Numerical Computation

担当教員 : 武居 昌宏

科目区分

2009 年入学生: 専門選択必修 F20 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[目的・目標] 主として代数学や初等解析学の分野に現れる数式の数値計算法を説明する。これらの数式を数学公式通りに手計算で解いて、具体的に数値を求めようとすれば、膨大な計算量となり実行不可能となることが多い。数学公式をそのまま用いるよりも能率的で速い算法が古くより考案されている。古典的な算法に加えて、コンピュータ向きの新しい算法を説明する。

- 1. 数值、誤差
- 2. 非線型方程式
- 3. 数值積分法
- 4. 数値積分の加速
- 5. 常微分方程式 初期值問題
- 6. 有限差分法 (FDM)
- 7. 有限要素法 (FEM)
- 8. 偏微分方程式
- 9. FEM(2)
- 10. 連立一次方程式 反復解法
- 11. 共役勾配 (CG) 法
- 12. 前処理付共役勾配 (PCG) 法
- 13. ICCG法
- 14. 固有値問題
- 15. 行列の条件数

[キーワード] 数値計算, 微分積分, 微分方程式, 線型代数

[教科書・参考書] 杉浦洋著「数値計算の基礎と応用」サイエンス社新情報教育ライブラリM-11 ,河村哲也著「数値計算入門」サイエンス社 Computer Science Library 17

[評価方法・基準] 講義中に提示する課題問題に対するリポート

[履修要件] 「情報処理」を履修していることが望ましい。

[備考] 上記の内容は暫定的なものです.近日中に変更される予定です(機械工学科カリキュラム検討委員会)

T1Q037001

授業科目名: 材料強度学

科目英訳名: Strength and Fracture of Materials

担当教員 : 小林 謙一, 浅沼 博

単位数 : 2.0 単位 開講時限等: 3 年前期火曜 4 限 授業コード: T1Q037001 講義室 : 工 17 号棟 112 教室

科目区分

2009 年入学生: 専門選択必修 F20 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 100

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[授業概要] 材料力学 I,II において学んだ基礎知識を踏まえて,固体力学における基本概念を紹介するうちに,破損条件 諸説と塑性の降伏条件,転位の基本概念などを含む塑性変形および破壊における微視的機構,線形と非線形破壊力 学,疲労破壊,金属のクリープ,複合材料の強度理論に関することを学ぶ.

[目的・目標] 材料学と固体力学における二つの視点から、金属材料と先進複合材料などにおける破壊現象と破壊評価の手法を理解する。まず、古典的な"応力• ひずみ"情報に基づく強度説と"現象論"からなる古典的塑性理論を学ぶことにより、材料と構造物の設計などへの応用を理解する。次は、材料学と固体力学の視点からなる材料強度を低下させる二つの因子、すなわち、転位論およびGriffithの破壊モデルを紹介するうちに、塑性変形および破壊における微視的機構とメカニズムの理解を深める。また、寸法効果を含む線形および非線形破壊力学の知識を理解する。さらに、金属材料における疲労およびクリープ現象と基礎知識を理解する。最後に、繊維強化材を用いる先進複合材料の強度理論について理解する。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み	
1	応力とひずみに基づく強度理論および構造設計への応用を理解することができるようになる。(機B-3)	1 ~ 5	レポート課題	30 %	
2	材料の塑性変形および破壊現象を,転位論および破壊力学の知識を把握することにより,深く理解することができるようになる。(機B-3)	6 ~ 1 0	レポート課題	40 %	
3	金属材料における疲労およびクリーブ現象と基礎知識に対する理解ができるようになる。さらに、応力情報に基づく繊維強化材の強度理論を理解ことができるようになる。(機B-3)	11~14	レポート課題	30 %	

- [授業計画・授業内容] まず,古典的な"応力• ひずみ"情報に基づく強度諸説と"現象論"からなる古典的塑性理論を紹介する.次は,材料学と固体力学の視点からなる材料強度を低下させる二つの因子,すなわち,転位論および Griffith の破壊モデルを紹介するうちに,塑性変形および破壊における微視的機構とメカニズムを説明する.また,応力拡大係数,エネルギー解放率、J積分などを含む線形および非線形破壊力学の知識を紹介する.さらに,金属材料における疲労およびクリープ現象と基礎知識を紹介し,特に,Manson-Coffin 則と Paris 則などを含む疲労とクリープ現象における知識を講義する.最後に,繊維強化材を用いる先進複合材料の強度理論について説明する.
 - 1. 固体力学基礎:応力-ひずみ
 - 2. 応力またはひずみ情報に基づく破損条件諸説と塑性の降伏条件(1)
 - 3. 応力またはひずみ情報に基づく破損条件諸説と塑性の降伏条件(2)
 - 4. 塑性変形および破壊における微視的機構(1)
 - 5. 塑性変形および破壊における微視的機構(2)
 - 6. 破壊力学(1)
 - 7. 破壊力学 (2)
 - 8. 破壊力学(3)
 - 9. 疲労破壊(1)
 - 10. 疲労破壊 (2)
 - 11. 金属のクリープ(1)
 - 12. 金属のクリープ(2)
 - 13. 複合材料の強度理論(1)
 - 14. 複合材料の強度理論 (2)
 - 15. 複合材料の強度理論(3)
- [キーワード] 破損条件諸説と塑性の降伏条件,塑性変形と破壊における微視的機構,線形と非線形破壊力学,疲労,クリ, プ,複合材料の強度理論

[教科書・参考書] 講義資料をインターネットからダウンロードおよび一部の資料プリントを配付する.

[評価方法・基準] 宿題40%, 最終レポート60%, 二つ評価の総合成績が60点以上を合格とする.

[関連科目] 材料力学1,2

[履修要件] 材料力学1,2を履修していること.

[備考] 材料力学1,2を合格していることが望ましい.

T1Q038001

授業科目名: 基礎制御理論 II

科目英訳名: Introduction to Control Theory, Part II

担当教員 : 並木 明夫

単位数 : 2.0 単位 開講時限等: 3 年前期月曜 5 限 授業コード: T1Q038001 講義室 : エ 17 号棟 214 教室

科目区分

2009 年入学生: 専門選択必修 F20(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可; 基礎制御理論 $\mathbf{I}(p. _{\text{dd}} 25 \text{ } \mathrm{T1Q023001})$ を履修した者

[授業概要] システムの安定性に関して古典制御の観点から講義し,続いてシステムの内部状態を表す状態方程式表現に基づき,制御系解析・設計を行うために必要な基礎的な理論について講義する.また,具体的な制御対象を意識してその初歩的な制御系設計が行えるように制御理論の基礎から制御系設計までを解説する.そして,状態フィードバック制御,状態推定器(オブザーバ),サーボ系の設計を具体的に行う.

[目的・目標] まず,古典制御に基づくシステムの安定性について学び,続いてシステムの内部状態を表す状態方程式表現方法を習得し,制御系解析・設計を行うために必要な基礎理論を学ぶ.具体的な振動系や位置決め系などの制御対象に初歩的な制御系設計が行えるようになり,制御理論の基礎から制御系設計までを習得する.最終的には状態フィードバック制御,状態推定器(オブザーバ),サーボ系の設計が行えるようになる.

	The state of the s					
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み		
1	システムの安定性を理解し,その判別ができるようになる.	1, 2	期末試験	20 %		
2	システムの状態方程式の表現方法,状態方程式の解とその安定性について 理解し,モデル化ができるようになる.	3, 4, 5	期末試験	20 %		
3	状態方程式に基づき,可制御性,可観測性の概念を理解し,その計算ができるようになる.	6, 7	期末試験	20 %		
4	可制御性,可観測性のあるシステムに対する,状態フィードバック制御,オブザーバの設計ができるようになる.	9-12	期末試験	20 %		
5	内部モデル原理を理解し,サーボ系の設計ができるようになる.	14, 15	期末試験	20 %		

- [授業計画・授業内容] システムの安定性に関して古典制御の観点から講義し、続いてシステムの内部状態を表す状態方程式表現に基づき、制御系解析・設計を行うために必要な基礎的な理論について講義する.また、具体的な制御対象を意識してその初歩的な制御系設計が行えるように制御理論の基礎から制御系設計までを解説する.そして、状態フィードバック制御、状態推定器(オブザーバ)、サーボ系の設計を具体的に行う.
 - 1. システムの安定性(1)
 - 2. システムの安定性(2)
 - 3. 状態方程式の解,線形システムの応答
 - 4. 固有値と安定性
 - 5. リアプノフ方程式による安定判別
 - 6. システムの可制御・可観測性
 - 7. 実現問題とモデルの低次元化
 - 8. 演習(1)
 - 9. 状態フィードバックによる安定化 (極配置法)
 - 10. 状態推定, オブザーバ
 - 11. 状態フィードバックとオブザーバによる安定化(1)
 - 12. 状態フィードバックとオブザーバによる安定化(2)
 - 13. 演習(2)
 - 14. 内部モデル原理, サーボ系設計(1)
 - 15. 内部モデル原理, サーボ系設計(2)
 - 16. 期末試験

[キーワード] 状態方程式,可制御性,可観測性,安定性,状態フィードバック制御,オブザーバ,サーボ系

[教科書・参考書] MATLAB による制御理論の基礎,野波,西村,東京電機大学出版局

[評価方法・基準] 期末試験により評価する.

[関連科目] 基礎制御理論 I(p. 機械 25 T1Q023001)

[履修要件] 基礎制御理論 $\mathbf{I}(p. \otimes 25 \text{ T1Q023001})$ を履修していることが望ましい.

T1Q039001

授業科目名:機械設計製図

科目英訳名: Machine Design and Drawing

担当教員 : 樋口静一

単位数: 2.0 単位開講時限等: 3 年後期水曜 4,5 限授業コード: T1Q039001, T1Q039002講義室: エ 17 号棟 215 教室

科目区分

2009 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義・実習

[受入人数] 40

[受講対象] 工学部機械工学科

- [授業概要] すでに習得した機械製図基礎,材料力学,機械要素,金属材料,機械運動学などの各科目を基礎として簡単な機械を設計し,これを部品図,組み立て図として完成させる方法を講義する.機械設計の基本的事項が網羅されている手巻ウインチおよび歯車ポンプの設計を通して,設計の基礎的方法を説明する.各受講者には異なる基本仕様(巻上げ荷重,揚程など)が与えられるため,それを満たす設計にあたり各自の設計思想や主張が必要となる.
- [目的・目標] 設計は必要とされる機械の構想を,機構,強度,経済性,環境など,さまざまな面から解析,検討の後, 図面として具現化する技術である.本講義では,手巻ウインチおよび歯車ポンプを例題として機械設計の初歩的手 法を修得する.すなわち,巻上げ機構,歯車,軸,すべり軸受などの機械要素部品,制動装置について,実際に使 用される状態を考慮した設計ができるようになる.さらに,機械部品間の干渉,操作性,重量など機械設計におけ る基礎的検討項目や方法を学ぶ.

	MERSINGS NEW TOTAL STREET			
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	設計課題の基本構想を理解したうえで設計思想を確立し,それを設計図上に反映させる方法を学ぶ.また,機械装置において,最も重要な動力伝達と変換,および増力機構の基本原理を理解し,安全性や環境負荷も考慮した実際面での設計,応用ができるようになる(機 B-1, 機 C-1, 機 D-1).	1, 2, 3, 11	設計計算書,部分計画図	20 %
2	軸,軸受の設計により,実際に使用される状態の機械要素の設計に,材料力学で学習した問題解決法が応用できることを学ぶ.また軸関連要素の設計ができるようになる(機 B - 1 ,機 C - 1 ,機 D - 1).	1, 2, 3, 4, 13	設計計算書,部分計画図	15 %
3	機械装置の出力側運動制御要素として必須となるブレーキの仕組みを理解し,出力に応じたブレーキを設計できるようになる (機 B - 1 , 機 C - 1 , 機 D - 1) .	1, 2, 3, 4, 5, 6	設計計算書,部分計画図	15 %
4	全体計画図の作成により,機械全体の系統的構成とその連携から基本仕様の充足,部品間の干渉などの検討を加え,その結果を考慮した設計変更ができるようになる(機 B - 1 ,機 C - 1 ,機 D - 1).	1, 2, 3, 4, 5, 6, 12	作図した全体計画図	20 %
5	設計した部品を部品図として製図ができるようになる(機 $\mathrm{C} ext{-}1$,機 $\mathrm{D} ext{-}1$).	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	作図した図面	30 %

- 1. 機械設計の意義,手巻ウインチの説明:本授業が関連する科目の中で占める位置,目的,取扱う範囲について述べる.機械設計において,効率,経済性,機能性のみならず,環境負荷の低減や安全性を考慮することが重要であることを述べ,実際の課題を説明する.ワイヤロ-プの選定と巻胴の設計,設計演習「課題1.ワイヤロ-プ,巻胴の設計」:ワイヤロ-プの選定を通じて労働安全衛生規則の意義を知り,機械設計行為が社会規範に従わなければならないことを知る.巻胴について,巻上げ荷重,揚程に基づく計算や,諸元の決定方法を説明する.
- 2. 歯車の設計(1),設計演習「課題2.歯車の設計および歯車配置計画図」:減速比,歯数比および平歯車の基本項目の決定方法について説明する.また,その強度計算方法について述べる.
- 3. 歯車の設計(2),設計演習「課題2.歯車の設計および歯車配置計画図」:歯車配置計画図の作図方法ならびに,歯車と巻胴との干渉の有無の確認方法について説明する.さらに,干渉する場合の対処方法について述べる.
- 4. 軸の設計,設計演習「課題3.軸,軸受の設計」:基本仕様に基づき設計すべき軸の種類について解説する. 各軸について支持方式や荷重のかかり方を考慮しながら強度計算を行い,軸径を決定する方法を述べる.
- 5. ブレーキ装置の設計,設計演習「課題4.ブレーキ装置の設計と概略図」:制動すべき軸のトルクからブレーキの諸元を計算する方法,ならびにブレーキ関連部品の設計方法について説明する.リベット継手の安全率から,安全を考慮した機械設計について説明する.組立図の概略を描き,他との干渉の有無を確認する方法について述べる.
- 6. 設計演習「課題5.全体計画図作成」: 設計した主要部品をすべて配置する全体計画図の作成方法について解説する. 各部品間の干渉の有無,設計仕様の充足,操作性などの確認について述べる.
- 7. 製図演習「課題 6 . ハンドル軸 , ハンドル軸歯車の製図]: CAD を使用して計算結果をもとに製図を行う (10 回まで).
- 8. 製図演習「課題7. 中間軸,中間軸大歯車の製図」
- 9. 製図演習「課題8. 巻胴歯車の製図」
- 10. 製図演習「課題9. 巻胴の製図」,修正を行った計算書,部分計画図,全体計画図の提出.
- 11. 歯車ポンプの設計(1),歯車ポンプの機構について説明し,設計指針を理解する「課題10.歯車ポンプの設計」
- 12. 歯車ポンプの設計(2),歯車ポンプの設計「課題11.歯車ポンプの計画図」設計した歯車ポンプの部品の計画図を作成し、干渉など確認する.
- 13. 歯車ポンプの設計(3), 駆動軸の強度計算法を説明する. CAD を用いて製図を行う(15回まで)「課題13. 歯車, 駆動軸の製図」
- 14. 製図演習「課題14. 駆動側カバーの製図」
- 15. 製図演習「課題15. ギヤケースの製図」

[キーワード]機械設計製図,手巻ウインチ,歯車ポンプ,СAD

[教科書・参考書] 「手巻ウインチ・クレーン」大西 清 著 オーム社「新編JIS機械製図」 吉澤武男 編著 森 北出版

[評価方法・基準] 最終評価を受けるためには,全ての設計演習および製図演習課題を提出していることが必要である. 授業担当者は各提出課題を点検し,誤りなどあれば指摘して返却する.受講者は,指摘事項を元に訂正した計算 書,図面を再提出する.最終的な採点は [目的・目標] に示した表に則り最終提出物によって行う.合格基準は, 総合点が 60 点以上とする.

[関連科目] 材料力学 I,機械運動学,設計基礎論,鉄鋼材料,機械製図基礎

[履修要件]機械製図基礎の単位を取得しておくこと(必須).材料力学I,機械運動学,設計基礎論,鉄鋼材料を履修しておくことが望ましい.

[備考] この科目は,機械工学コース学習教育目標の「(B) 事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-1) , (C) 論理的な思考力」に関する具体的な達成内容 (C-1) および「(D) システムデザイン能力」に関する具体的な達成内容 (D-1) を取り扱う.

T1Q039003

授業科目名:機械設計製図

科目英訳名: Machine Design and Drawing

担当教員 : 比田井 洋史

単位数 : 2.0 単位 開講時限等: 3 年後期金曜 4,5 限 授業コード: T1Q039003, T1Q039004 講義室 : エ 17 号棟 215 教室

科目区分

2009 年入学生: 専門必修 F10 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義・実習

[受入人数] 40

[受講対象] 工学部機械工学科

[授業概要] すでに習得した機械製図基礎,材料力学,機械要素,金属材料,機械運動学などの各科目を基礎として簡単な機械を設計し,これを部品図,組み立て図として完成させる方法を講義する.機械設計の基本的事項が網羅されている手巻ウインチおよび歯車ポンプの設計を通して,設計の基礎的方法を説明する.各受講者には異なる基本仕様(巻上げ荷重,揚程など)が与えられるため,それを満たす設計にあたり各自の設計思想や主張が必要となる.

[目的・目標] 設計は必要とされる機械の構想を,機構,強度,経済性,環境など,さまざまな面から解析,検討の後, 図面として具現化する技術である。本講義では,手巻ウインチおよび歯車ポンプを例題として機械設計の初歩的手 法を修得する。すなわち,巻上げ機構,歯車,軸,すべり軸受などの機械要素部品,制動装置について,実際に使 用される状態を考慮した設計ができるようになる。さらに,機械部品間の干渉,操作性,重量など機械設計におけ る基礎的検討項目や方法を学ぶ。

O 22					
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み	
1	設計課題の基本構想を理解したうえで設計思想を確立し,それを設計図上に反映させる方法を学ぶ.また,機械装置において,最も重要な動力伝達と変換,および増力機構の基本原理を理解し,安全性や環境負荷も考慮した実際面での設計,応用ができるようになる(機 B -1,機 C -1,機 D -1).	1, 2, 3, 11	設計計算書,部分計画図	20 %	
2	軸,軸受の設計により,実際に使用される状態の機械要素の設計に,材料力学で学習した問題解決法が応用できることを学ぶ.また軸関連要素の設計ができるようになる(機 B - 1 , 機 C - 1 , 機 D - 1).	1, 2, 3, 4, 13	設計計算書,部分計画図	15 %	
3	機械装置の出力側運動制御要素として必須となるブレーキの仕組みを理解し,出力に応じたブレーキを設計できるようになる (機 B - 1 ,機 C - 1 ,機 D - 1).	1, 2, 3, 4, 5, 6	設計計算書,部分計画図	15 %	
4	全体計画図の作成により,機械全体の系統的構成とその連携から基本仕様の充足,部品間の干渉などの検討を加え,その結果を考慮した設計変更ができるようになる(機 B - 1 ,機 C - 1 ,機 D - 1).	1, 2, 3, 4, 5, 6, 12	作図した全体計画図	20 %	
5	設計した部品を部品図として製図ができるようになる (機 $\mathrm{C} ext{-}1$,機 $\mathrm{D} ext{-}1$).	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15	作図した図面	30 %	

[授業計画・授業内容]

1. 機械設計の意義,手巻ウインチの説明:本授業が関連する科目の中で占める位置,目的,取扱う範囲について述べる.機械設計において,効率,経済性,機能性のみならず,環境負荷の低減や安全性を考慮することが重要であることを述べ,実際の課題を説明する.ワイヤロ-プの選定と巻胴の設計,設計演習「課題1.ワイヤロ-プ,巻胴の設計」:ワイヤロ-プの選定を通じて労働安全衛生規則の意義を知り,機械設計行為が社会規範に従わなければならないことを知る.巻胴について,巻上げ荷重,揚程に基づく計算や,諸元の決定方法を説明する.

- 2. 歯車の設計(1),設計演習「課題2.歯車の設計および歯車配置計画図」:減速比,歯数比および平歯車の基本項目の決定方法について説明する.また,その強度計算方法について述べる.
- 3. 歯車の設計(2),設計演習「課題2.歯車の設計および歯車配置計画図」:歯車配置計画図の作図方法ならびに,歯車と巻胴との干渉の有無の確認方法について説明する.さらに,干渉する場合の対処方法について述べる.
- 4. 軸の設計,設計演習「課題3.軸,軸受の設計」:基本仕様に基づき設計すべき軸の種類について解説する. 各軸について支持方式や荷重のかかり方を考慮しながら強度計算を行い,軸径を決定する方法を述べる.
- 5. ブレーキ装置の設計,設計演習「課題4.ブレーキ装置の設計と概略図」:制動すべき軸のトルクからブレーキの諸元を計算する方法,ならびにブレーキ関連部品の設計方法について説明する.リベット継手の安全率から,安全を考慮した機械設計について説明する.組立図の概略を描き,他との干渉の有無を確認する方法について述べる.
- 6. 設計演習「課題5.全体計画図作成」: 設計した主要部品をすべて配置する全体計画図の作成方法について解説する、各部品間の干渉の有無,設計仕様の充足,操作性などの確認について述べる.
- 7. 製図演習「課題 6 . ハンドル軸 , ハンドル軸歯車の製図]: CAD を使用して計算結果をもとに製図を行う (10回まで).
- 8. 製図演習「課題7.中間軸,中間軸大歯車の製図」
- 9. 製図演習「課題8. 巻胴歯車の製図」
- 10. 製図演習「課題9. 巻胴の製図」,修正を行った計算書,部分計画図,全体計画図の提出.
- 11. 歯車ポンプの設計(1),歯車ポンプの機構について説明し,設計指針を理解する「課題10.歯車ポンプの設計」
- 12. 歯車ポンプの設計(2),歯車ポンプの設計「課題11.歯車ポンプの計画図」設計した歯車ポンプの部品の計画図を作成し、干渉など確認する.
- 13. 歯車ポンプの設計(3),駆動軸の強度計算法を説明する. CAD を用いて製図を行う(15回まで)「課題13. 歯車,駆動軸の製図」
- 14. 製図演習「課題14. 駆動側カバーの製図」
- 15. 製図演習「課題15. ギヤケースの製図」

[キーワード]機械設計製図,手巻ウインチ,歯車ポンプ,СAD

[教科書・参考書] 「手巻ウインチ・クレーン」大西 清 著 オーム社「新編JIS機械製図」 吉澤武男 編著 森 北出版

[評価方法・基準] 最終評価を受けるためには,全ての設計演習および製図演習課題を提出していることが必要である. 授業担当者は各提出課題を点検し,誤りなどあれば指摘して返却する.受講者は,指摘事項を元に訂正した計算 書,図面を再提出する.最終的な採点は [目的・目標] に示した表に則り最終提出物によって行う.合格基準は, 総合点が 60 点以上とする.

[関連科目] 材料力学 I , 機械運動学 , 設計基礎論 , 鉄鋼材料 , 機械製図基礎

[履修要件] 機械製図基礎の単位を取得しておくこと (必須) . 材料力学 I , 機械運動学 , 設計基礎論 , 鉄鋼材料を履修しておくことが望ましい .

[備考] この科目は,機械工学コース学習教育目標の「(B)事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-1), (C) 論理的な思考力」に関する具体的な達成内容 (C-1) および「(D) システムデザイン能力」に関する具体的な達成内容 (D-1) を取り扱う.

T1Q040001

授業科目名: 機械工学実習

科目英訳名: Practical Training in Machining

担当教員 : 各教員

単位数 : 2.0 単位 開講時限等: 3 年後期水曜 4.5 限

授業コード: T1Q040001, T1Q040002 講義室 : 工電子機械工学科機械工場 (13 号棟 102)

科目区分

2009 年入学生: 専門必修 F10 (**T1KD**:機械工学科 (先進科学) , **T1Q**:機械工学科)

[授業の方法] 実習

[受入人数] 40名

[受講対象] 電子機械工学科3年生(機械系コース)

[授業概要] 各種加工法を実地に体験すると共に,機械操作等における安全意識を養う.

[目的・目標] ものづくりの基本となる生産技術や加工技術を実際に体験し、種々の工作法を修得すると共に、ものを加工する工程を把握し、生産設計や生産計画を行えるエンジニアセンスを育成する。

- [授業計画・授業内容] 機械部品には丸物,平面上の物,複雑形状の物等がある.旋盤を用いた丸物の加工,フライス盤による平面加工と平面の精度を更に向上させるための研削仕上げ,複雑形状の加工が可能な放電加工等を体験する.また,機械部品を接合させるための電気溶接とガス溶接も体験する.これらの加工は,NC装置による自動化の方向にあるため,NCプログラミングについても勉強する.授業は5班制で行う。以下の例は旋盤実習から始まる場合を示す
 - 1. 旋盤作業 1 回: 安全作業説明,普通旋盤構造,操作説明,基本操作,加工基礎: 一輪挿しの製作 外径切削 加工,端面切削加工,穴あけ加工,ねじ切り加工(タップ)
 - 2. 旋盤作業 2 回: 一輪挿し製作 外径切削加工、端面切削加工,段付け加工,溝削り加工,穴あけ加工,ねじ切り加工(ダイス)
 - 3. 旋盤作業3回:・一輪挿し製作(仕上げ作業) 外径切削加工,テーパ削り加工,段付け加工,溝削り加工
 - 4. フライス盤作業 1:機械操作説明、材料固定作業、工具取付作業、切削加工、寸法測定、ケガキ作業
 - 5. フライス盤作業 2: 材料固定作業、工具取付作業、切削加工、寸法測定
 - 6. フライス盤作業 3: 材料固定作業、工具取付作業、切削加工、寸法測定、仕上加工、面取加工、ヤスリ仕上
 - 7. NC工作機械: NC工作機械概要説明、NCプログラムの説明(2軸)、NCプログラムの説明(3軸)
 - 8. CNC旋盤作業: NCプログラムの作成、対話式NCプログラムの説明、対話式NCプログラムの作成、NC加工、レポート
 - 9. マシニングセンターによる加工: N C プログラムの作成、対話式 N C プログラムの説明、対話式 N C プログラムの作成、ワーク位置決め、N C 加工、レポート
 - 10. 溶接作業1:アセチレン酸素ガス溶断(鋼板の溶断)
 - 11. 溶接作業 2:交流アーク溶接(鋼板の下向き突合せ溶接)
 - 12. 溶接作業3: TIG溶接(アルミ、ステンレス下向き突合せ溶接) MAG溶接(鋼板の下向き突合せ溶接)
 - 13. 放電加工1:放電加工の原理と歴史、放電加工概要VTR、CADCAMによる課題データー修正およびNCプログラム生成、NCデーターネットワーク転送、
 - 14. 放電加工 2 : 形彫放電加工 金型加工説明、形彫放電加工機概要、ワーク位置決め、制御装置操作、加工条件設定、プログラム、加工
 - 15. 放電加工3:ワイヤ放電加工機説明、制御装置操作説明、ワーク固定・位置決め、加工条件設定、加工、考察、レポート
 - 16. まとめの試験:安全に関する事項と,各加工法の要点について簡単な試験を行う

[キーワード] ものづくり,機械加工,機械操作,金属材料,機械要素,材料力学,設計製図

[教科書・参考書] 教科書:基礎をしっかりマスター ココからはじめる機械加工,平田宏一著,日刊工業新聞社(別途プリントなども配布)他に参考図書として「工作機械」「機械製作法」に関する図書(夏期休業中に熟読しておくこと)

[評価方法・基準] 実習で製作した製品の仕上がり状況と,製作中の手順、作業報告書・レポート・試験により評価する.

[関連科目] 機械製図基礎

[履修要件] 機械製図基礎を必ず履修していること

[備考] 2011 年 9 月 30 日 (夏期休業中) にガイダンスを実施し安全教育を行う。機械製図基礎で行う CAD の課題を実際に製作するため,機械製図基礎は必ず履修してデーターを作成しておくこと。また,人身事故などを予防し安全に作業するために、作業着(指定購入)および靴を着用し、作業中は注意力を集中して慎重に行動すること。本科目は,電子機械工学実習」の読替科目である。

T1Q040003

授業科目名: 機械工学実習

科目英訳名: Practical Training in Machining

担当教員 : 各教員

単位数 2.0 単位 開講時限等: 3 年後期金曜 4,5 限

授業コード: T1Q040003, T1Q040004 講義室 : 工電子機械工学科機械工場 (13 号棟 102)

科目区分

2009 年入学生: 専門必修 F10 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 実習

[受入人数] 40名

[受講対象] 電子機械工学科3年生(機械系コース)

[授業概要] 各種加工法を実地に体験すると共に,機械操作等における安全意識を養う.

[目的・目標] ものづくりの基本となる生産技術や加工技術を実際に体験し、種々の工作法を修得すると共に、ものを加工する工程を把握し、生産設計や生産計画を行えるエンジニアセンスを育成する。

- [授業計画・授業内容] 機械部品には丸物,平面上の物,複雑形状の物等がある.旋盤を用いた丸物の加工,フライス盤による平面加工と平面の精度を更に向上させるための研削仕上げ,複雑形状の加工が可能な放電加工等を体験する.また,機械部品を接合させるための電気溶接とガス溶接も体験する.これらの加工は,NC装置による自動化の方向にあるため,NCプログラミングについても勉強する.授業は5班制で行う。以下の例は旋盤実習から始まる場合を示す
 - 1. 旋盤作業 1 回: 安全作業説明,普通旋盤構造,操作説明,基本操作,加工基礎: 一輪挿しの製作 外径切削 加工,端面切削加工,穴あけ加工,ねじ切り加工(タップ)
 - 2. 旋盤作業 2 回: 一輪挿し製作 外径切削加工、端面切削加工,段付け加工,溝削り加工,穴あけ加工,ねじ切り加工(ダイス)
 - 3. 旋盤作業3回:・一輪挿し製作(仕上げ作業) 外径切削加工,テーパ削り加工,段付け加工,溝削り加工
 - 4. フライス盤作業 1:機械操作説明、材料固定作業、工具取付作業、切削加工、寸法測定、ケガキ作業
 - 5. フライス盤作業 2: 材料固定作業、工具取付作業、切削加工、寸法測定
 - 6. フライス盤作業3:材料固定作業、工具取付作業、切削加工、寸法測定、仕上加工、面取加工、ヤスリ仕上
 - 7. NC工作機械: NC工作機械概要説明、NCプログラムの説明(2軸)、NCプログラムの説明(3軸)
 - 8. CNC旋盤作業: NCプログラムの作成、対話式NCプログラムの説明、対話式NCプログラムの作成、NC加工、レポート
 - 9. マシニングセンターによる加工:NCプログラムの作成、対話式NCプログラムの説明、対話式NCプログラムの作成、ワーク位置決め、NC加工、レポート
 - 10. 溶接作業1:アセチレン酸素ガス溶断(鋼板の溶断)
 - 11. 溶接作業 2:交流アーク溶接(鋼板の下向き突合せ溶接)
 - 12. 溶接作業3: TIG溶接(アルミ、ステンレス下向き突合せ溶接) MAG溶接(鋼板の下向き突合せ溶接)
 - 13. 放電加工1:放電加工の原理と歴史、放電加工概要VTR、CADCAMによる課題データー修正およびNCプログラム生成、NCデーターネットワーク転送、
 - 14. 放電加工 2 : 形彫放電加工 金型加工説明、形彫放電加工機概要、ワーク位置決め、制御装置操作、加工条件設定、プログラム、加工
 - 15. 放電加工3:ワイヤ放電加工機説明、制御装置操作説明、ワーク固定・位置決め、加工条件設定、加工、考察、レポート
 - 16. まとめの試験:安全に関する事項と,各加工法の要点について簡単な試験を行う

[キーワード] ものづくり,機械加工,機械操作,金属材料,機械要素,材料力学,設計製図

[教科書・参考書] 教科書:基礎をしっかりマスター ココからはじめる機械加工,平田宏一著,日刊工業新聞社(別途プリントなども配布)他に参考図書として「工作機械」「機械製作法」に関する図書(夏期休業中に熟読しておくこと)

[評価方法・基準] 実習で製作した製品の仕上がり状況と,製作中の手順、作業報告書・レポート・試験により評価する.

[関連科目] 機械製図基礎

[履修要件] 機械製図基礎を必ず履修していること

[備考] 2011 年 9 月 30 日 (夏期休業中) にガイダンスを実施し安全教育を行う。機械製図基礎で行う CAD の課題を実際に製作するため,機械製図基礎は必ず履修してデーターを作成しておくこと。また,人身事故などを予防し安全に作業するために、作業着(指定購入)および靴を着用し、作業中は注意力を集中して慎重に行動すること。本科目は,電子機械工学実習」の読替科目である。

T1Q04100

授業科目名: デザイン工学 科目英訳名: Synthetic Design

担当教員 : 各教員

単位数 : 2.0 単位 開講時限等: 3 年後期月曜 4,5 限

授業コード: T1Q041001, T1Q041002 講義室 : 工 17 号棟 111 教室, 工 17 号棟 112 教室,

工 15 号棟 109 教室, 工 17 号棟 111 教室,

工 17 号棟 112 教室

1) 原則として 12 月で授業は終了する。2) チーム担当教員により他の曜日に実施する場合がある。3) 第 1 回は 9 月中に実施することがある。

科目区分

2009 年入学生: 専門必修 F10 (**T1KD**:機械工学科 (先進科学) , **T1Q**:機械工学科)

[授業の方法] 講義・演習

[受入人数] 80

[受講対象]機械工学科3年次(先進科学を含む)および電子機械工学科(機械系コース)4年次に限る

[授業概要] 受講学生を1チーム約5人の学生チームに分け,チーム単位で機械工学分野におけるデザイン課題 (Engineering design)に取り組ませる.各チームには専任の教員1名がつき,各教員は予め掲げた比較的広範なテーマにそって学生チームに設計製作等の具体的な課題を設定させ,実行させる.さらに,各教員は全体発表会でチームの成果を発表させる.ただし,課題設定,実行,発表において,教員は学生の行動に強く関与することはせず,基本的にアドバイスを与えるのみに留める.なお,Industrial design は対象としない.

[目的・目標] 本科目では,チームを編成しデザイン課題に取り組むことを通して,機械工学分野における総合的な問題発見(設定)能力と問題解決能力を養成することを目的とする.課題の設定や遂行については,原則として学生が主体的に行う.本科目では,問題発見(設定)能力,問題解決能力に加えて,プレゼンテーション能力,チームワーク力をも身につけることができる.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	機械工学分野における問題発見(設定)能力を身につける(A-2,C-2)	1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9	発言,行動,報告書	30 %
2	機械工学分野における問題解決能力を身につける (A-2,D-1)	5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5	発言,行動,報告書	30 %
3	ブレゼンテーション能力を身につける (E-2)	5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 1 4 , 1 5	発言,行動,報告書	20 %
4	チームワーク力を身につける.	5,6,7,8, 9,10,11, 12,13,14, 15	発言,行動,報告書	2 0 %

[授業計画・授業内容] 9月最終週から始まる.第1~3回の日時と講義室については,7月頃に学科掲示板にて周知する.

- 1. 設計論と技術者倫理1(講義)
- 2. 設計論と技術者倫理2(講義)
- 3. 設計論と技術者倫理3(講義)
- 4. チーム班分け後, 各チーム単位で問題設定・解決を実践
- 5. 各チーム単位で問題設定・解決を実践
- 6. 各チーム単位で問題設定・解決を実践
- 7. 各チーム単位で問題設定・解決を実践
- 8. 各チーム単位で問題設定・解決を実践
- 9. 各チーム単位で問題設定・解決を実践
- 10. 各チーム単位で問題設定・解決を実践
- 11. 各チーム単位で問題設定・解決を実践
- 12. 各チーム単位で問題設定・解決を実践
- 13. 各チーム単位で問題設定・解決を実践
- 14. 各チーム単位で問題設定・解決を実践

- 15. 各チーム単位で問題設定・解決を実践
- 16. プレゼンテーション (成果物の展示と説明; 12月下旬)

[キーワード] エンジニアリングデザイン,問題発見,問題設定,問題解決,チームワーク,プレゼンテーション

[評価方法・基準] 普段の発言,行動および最終的に提出された報告書に基づいて評価する.それらの総合点が60点以上を合格とする.

[関連科目] すべての専門基礎科目および専門科目

[履修要件] 本年度前期終了時点で卒業に必要な単位のうち 80 単位を越えて修得していること

[備考] 各チームの指導は機械系の教授,准教授十数名が担当する.12月で授業は終了する.なお,他の担当授業との関係で教員により月曜日4,5時限以外で実施することがある.他の時限に実施する場合は,履修学生と協議のうえ時限を決定する.___この科目は,機械工学コースについては,学習教育目標の「(A)技術者倫理に基づく責任」に関する具体的な達成内容(A-2)「、(C)論理的な思考力」に関する具体的な達成内容(C-2)「、(D)システムデザイン能力」に関する具体的な達成内容(D-1)「、(E)自己表現」に関する具体的な達成内容(E-2)を取り扱う.

T1Q042001

授業科目名: 塑性加工 科目英訳名: Plastic working

担当教員 : 小山 秀夫

単位数: 2.0 単位開講時限等: 3 年後期金曜 2 限授業コード: T1Q042001講義室: 工 17 号棟 215 教室

科目区分

2009 年入学生: 専門選択必修 F20 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 60

[受講対象] 自学部他学科生 履修可, 科目等履修生 履修可

[授業概要] 材料に変形を与えることによって,目的の製品形状にする塑性加工の役割と特徴について概説する。まず加工素材の性質について説明し,その後,各種加工の特徴について説明する。講義では,できるだけ実際の製品の製造法を示しながら,他の加工法との違いがわかるように説明する。

[目的・目標] 材料の変形挙動と特性を理解するとともに,工業製品の9割以上の製造に用いられている各種の塑性加工法について,材料の変形特性とあわせて,それぞれの加工法の特徴を実際の先端的な加工例を含めて学習する。最終的に,新たな製品の製造法を開発できるような広い知見をもてる講義を目指す。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	工業製品全般における,塑性変形を利用した加工法の役割と特徴を説明で きる	1, 2, 3	中間試験	10 %
2	塑性変形による材質の改善について,理論的に説明できるようになる	1, 2, 3	中間試験	10 %
3	塑性変形を利用した各種素形材の製造方法について説明できるようになる	4, 5, 6, 7	中間試験	20 %
4	各種素形材の2次加工の種類と特徴を整理して理解できるようになる	9, 10, 11, 12, 13, 14, 15	期末試験	40 %
5	既存の加工法のほかに , 先端的な新加工法についての知見を得ることができる	11, 12, 13, 14, 15	レポート	20 %

- 1. 塑性加工の役割と特徴 工業製品の製造には不可欠で,非常に大きな割合を占める塑性加工の役割と特徴について,各種塑性加工方法の分類と歴史と発展について学習する。
- 2. 材料の組織と力学的性質 塑性加工に用いられる材料について,組織と力学的性質,金属の結晶塑性と熱処理の復習を含めて学習するとともに,塑性加工の理解に必要な力学の概念,力学的解析について学習する。
- 3. 塑性変形による材質変化とその利用 塑性加工の本質は,塑性変形による材質の改善にあるが,冷間加工での材質改善に加えて加工熱処理,残留応力,複合化による改善についても学習する。
- 4. 【素形材の製造】板圧延,圧延理論 板圧延の変形機構,ロール下での圧力分布,簡単な圧延理論について 学習し,圧延の基礎的事項を理解する。
- 5. 【素形材の製造】圧延機の種類と制御 実際に圧延に用いられている様々な機械と高温高圧にさらされる圧 延機の変形,それらを統括的に制御する方法について学習する。
- 6. 【素形材の製造】形材の圧延,孔形圧延,管の熱間圧延 様々な形材圧延の例として,孔形圧延とユニバーサル圧延,管材の製造について学習する。

- 7. 【素形材の製造】押出し加工・引抜き加工 形材,あるいは線,棒材の代表的製造方法である押出しと引抜き加工法について,力学的な考え方と新しい技術について学習する。
- 8. 中間試験 前回までに学習した内容についての中間試験を行う。試験期日は変更する場合がある。
- 9. 【二次加工/ブロック,線・管材】中間試験の総評と鍛造の基礎 中間試験の解説と総評。鍛造の技術についての概要を学習する。
- 10. 【二次加工 / ブロック , 線・管材】鍛造 各種鍛造技術に対する力学的な考え方と , ニアネットシェイプに加工する冷間鍛造の新技術と将来について学習する。
- 11. 【二次加工 / ブロック , 線・管材】管 , 線の二次加工 , 板材のせん断 様々な素形材の 2 次加工の種類について 学習し , それらの加工の前加工として重要なせん断加工について , 力学的な考え方と設備について学習する。
- 12. 【二次加工 / ブロック , 線・管材 】曲げ加工と矯正 曲げ加工中の材料変形挙動と加工限度 , 精度について力学的な解析方法を学ぶとともに , 矯正加工についても加工原理 , 設備について学習する。
- 13. 【二次加工 / ブロック , 線・管材 】 絞り・張出し加工 飲料缶の製造などの基礎となるプレス型による深絞り 加工を中心に , 解析方法 , 精度と製品設計 , 加工度の向上について学習する。
- 14. 【二次加工 / 板材】回転成形と金型の基礎 転造 , スピニングについての基礎的事項と仕上げ加工法 , インクリメンタルフォーミングと最先端の加工法と成形曲線について学習する。
- 15. 【二次加工 / その他】金型,接合・複合 各種の溶接法の特徴と材料同士を機械的に接合させる方法と金型 について学習する。
- 16. 期末試験 中間試験以降の講義の内容について,総合的に試験する。結果は翌週までに掲示する。

[キーワード] 塑性,塑性加工,変形加工,圧延,押出し,引抜き,鍛造,せん断,曲げ,絞り,張出し,バルジング,スピニング,インクリメンタルフォーミング,マイクロ加工,溶接

「教科書・参考書」「塑性加工入門」日本塑性加工学会編,コロナ社

[評価方法・基準] 中間試験(40 点満点), 期末試験(40 点満点)とレポート(20 点満点)の評点の合計が60 点以上を合格とする。なお試験の受験資格は講義に4/5以上出席することである。

[関連科目] 塑性力学 (p. 機械 40 T1Q034001), 機械加工学 (p. 機械 32 T1Q029001), 精密加工学 (p. 機械 56 T1Q046001)

[履修要件] 材料科学 (p. 機械 g T1Q010001), 材料力学 I(p. 機械 11 T1Q012001), 鉄鋼材料 (p. 機械 14 T1Q014001), 材料力学 II(p. 機械 22 T1Q021001), 塑性力学 (p. 機械 40 T1Q034001)を履修していることが望ましい

[備考] この科目は「機械系学習目標と関連科目の流れ」のうち (F)柔軟な思考力と計画的アプローチに関連した科目である。

T1Q043001

授業科目名: 熱流体工学 〔専門科目共通化科目〕

科目英訳名: Thermo-Fluid Engineering

担当教員 : 武居 昌宏

単位数 : 2.0 単位 開講時限等: 3 年後期月曜 2 限 授業コード: T1Q043001 講義室 : T1 17 号棟 T1 213 教室

科目区分

2009 年入学生: 専門選択必修 F20 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 90

[受講対象] 自学部他学科生 履修可, 他学部生 履修可

[授業概要] 流体力学I,IIで扱った流れに密度変化を考慮することで流れが劇的に変化することを知る、熱力学の主要法則が状態量を媒介に流れと結びつくことを知り、流れの記述方程式の解析解や数値解の求め方について習得する。密度など状態量変化をとり入れ、いわゆる圧縮性流体力学の基礎を知り数値流体力学の概要も知る。

[目的・目標] 熱力学の主要法則が流れと結びつくことを数式の上でも理解できるようになる。いわゆる圧縮性流体力学の基礎と具体例を理解できるようになる。偏微分方程式の3つの型と流れのタイプが理解でき、それぞれへの差分法の応用が理解でき、数値流体力学の概要を説明できるようになる。。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	1 次元圧縮性流れの方程式の解析例を通して、流体現象の数学的記述と基礎方程式の解析や物理現象を理解する。	1, 2, 3, 4, 5	試験で評価する	40 %
2	波動方程式の形式解と波の伝播の関係をまなび、流体力の表示と関係付け る	6, 7	試験	10 %
3	数値流体力学の基礎と方程式の分類、方程式の性質に適合した数値解法の 選択を学ぶ。差分表示を理解しエクセルによる表計算の技能を得る。	8, 9, 10, 11, 12	レポートと試験	40 %
4	流体エネルギーの発生(揚力、抗力、推力など)と制御	8, 13, 14, 15	試験	10 %

- [授業計画・授業内容] 熱力学の主要法則と状態量。1次元流れでの表示と解析、エントロピーの変化をマッハ数や状態量、衝撃波。波動の発生と伝播、流体分野の偏微分方程式の解析、。流体力の発生と制御、揚力、抗力、推力、数値流体力学の基礎と方程式の分類、亜音速流れ、超音速流れの数値解法、高速飛行における揚力、抗力、推力の推定と制御の実例
 - 1. 熱力学の主要法則と流れ
 - 2. エントロピーと状態量、音速
 - 3. 圧縮性1次元流れの解析
 - 4. 垂直衝撃波、斜め衝撃波、
 - 5. 湾曲衝擊波、膨張波、演習
 - 6. 圧縮性ポテンシアル流れ
 - 7. ノズル流れ
 - 8. 流体エネルギーの発生(揚力、抗力、推力など)と制御
 - 9. 数値流体力学の基礎と方程式の分類
 - 10. 亜音速流れの数値解法
 - 11. 波動方程式、伝導拡散方程式の解析解と数値解
 - 12. 波動方程式、伝導拡散方程式の差分表示。エクセルによる表計算による演習
 - 13. 超音速流れの数値解法
 - 14. 高速飛行における揚力、抗力、推力の推定と制御の実例
 - 15. 再突入物体などの軌道の最適化
 - 16. 試験

[キーワード] 流体力学、熱力学、偏微分方程式、数値計算法

[教科書・参考書] 教科書. 参考書: 前半は流体力学(培風館:工科の物理)。後半はプリント使用。

[評価方法・基準] 演習、レポート、期末試験

[関連科目] 流体力学 I, II、流体力学演習 I, II、熱力学

[履修要件] 流体力学 I , II と熱力学を履修しておくこと .

[備考] 10月3日(月)は休講とする

T1Q044001

授業科目名: バイオメカニクス 科目英訳名: Biomechanics 担当教員 : 劉 浩, 坪田 健一

単位数: 2.0 単位開講時限等: 3 年後期火曜 3 限授業コード: T1Q044001講義室: エ 17 号棟 213 教室

科目区分

2009 年入学生: 専門選択必修 F20 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 75

[受講対象] 自学部他学科生 履修可;機械工学科3年生および他学科学生で受講が認められた者。

- [授業概要] 生物・生体の形態・構造と機能を力学的観点から取り扱うバイオメカニクスの基礎として、生体組織や細胞の力学的性質、生体内の流れと循環系の血行力学モデル、生物遊泳と飛行の運動と流れ、生体の筋肉系・骨格系の性質、生体のエネルギー、熱、仕事などの事項を体系的に学習する。
- [目的・目標] 生物・生体の機能(はたらきやしくみ)と形態・構造(かたち)の基本的力学現象について理解出来る。 具体的には、1)生物・生体の組織や細胞などの構造、変形や強度などの力学的性質について理解できる。2)生物の遊泳や飛行の力学現象について理解できる。3)生体内の血管弾性や心臓・動脈・静脈内の血液流れ、筋肉・骨格系の関節や脊髄の力学現象について理解できる。4)生体のエネルギー、熱及び仕事などの代謝について理解できる。5)生体の最適設計や組織の機能適応と再構築について理解できる。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	生物・生体の組織や器官などの構造、変形や強度などの力学的性質につい て理解する	1, 2, 9	中間試験	15 %
2	生物の遊泳や飛行の力学現象について理解する	3, 4, 5	中間試験, 期末試験	30 %
3	生体内の血管弾性や心臓・動脈・静脈内の血流、筋肉・骨格系の力学現象 について理解する	6, 7, 8, 9, 10, 11, 12	中間試験,期末試験	40 %
4	生体のエネルギー、熱及び仕事などの代謝と、生体組織の最適設計や組織 の機能適応と再構築について理解する。	13, 14, 15	期末試験	15 %

[授業計画・授業内容]

- 1. バイオメカニクスについて概説する。生物・生体の運動における諸力学現象について紹介する。
- 2. 生体の構成、構造及び組織の力学的性質と生物・生体機能解析の基礎力学について理解する。
- 3. バクテリアからイルカまでの生物遊泳の運動、力学現象について理解する。
- 4. 昆虫や鳥の滑空、羽ばたき飛行、静止飛行などの運動、力学現象について理解する。
- 5. 生物の遊泳・飛行を模倣する生物機械 (バイオミメティクス)について理解する。
- 6. 生体循環器系の形態・構造と動脈血管の力学的性質について理解する。
- 7. 血液流れの特性、心臓内の血流、動脈内の血流、細い血管内の流れ、静脈内の血流などについて理解する。
- 8. 血流の力学、血圧や血流の伝播と反射、拍動流と弾性管内の流れなどについて理解する。血管病変と血流の 相関について理解する。中間テストを行う。
- 9. 細胞の内部構造と力学的特性について理解する。
- 10. 細胞の受動的および能動的運動について理解する。
- 11. 筋肉系の構造と力学的特性について理解する。
- 12. 骨格系における関節の摩擦と潤滑および脊髄の力学的特性と病変について理解する。
- 13. 生体のエネルギー、熱及び仕事などの代謝について理解する。
- 14. 生体組織の機能的適応と再構築について理解する。
- 15. 生物・生体の最適設計と医工学への応用について理解する。期末試験を行う。

[キーワード] 生物、生体、基礎力学、細胞、組織、血流、骨、遊泳、飛行、バイオミメティクス、最適設計

[教科書・参考書] 林紘三郎著「バイオメカニクス」コロナ社、Y. C. Fung「Biomechanics」Springer、その他

[評価方法・基準] 中間試験 (30 %) 期末試験 (70 %) 合わせて 100 点満点で評価する。単位を取得するためには、総合評点が 60 点以上であること。

[関連科目] 物理学入門 I, II、機械力学、材料力学、流体力学、熱力学、システム制御

[履修要件] 関連科目を履修したことが望ましい。

T1Q045001

授業科目名: トライボロジー 科目英訳名: Tribology

担当教員: 三科 博司単位数: 2.0 単位開講時限等: 3 年後期金曜 3 限授業コード: T1Q045001講義室: 工 17 号棟 213 教室

科目区分

2009 年入学生: 専門選択必修 F20 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

- [授業概要] トライボロジー現象とは,固体の表面が摩擦しあうときに起こる凝着,摩擦,摩耗,潤滑などのことである. この現象は,固体の機械的性質に依存するだけでなく,固体表面の物理化学的性質に大きく依存する.固体の表面 に関する性質の理解と摩擦・摩耗という現象によってもたらされる表面物性の特異現象の解説さらにその応用技術 ついて講義する.
- [目的・目標] 機械の運動を円滑に行わせ,また,長い期間にわたって機能を維持させること,さらには性能を向上させるために,固体表面の性質を理解しながら二面間で起こるトライボロジー現象(凝着・摩擦・摩耗)の本質を理解し,その応用技術としての潤滑の技術について学ぶ.また,PVD,CVDなどの薄膜表面の創製についても学習する.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	固体表面の物性を理解する.	1, 2, 3	レポート又は試験	25 %
2	トライボロジーの基礎現象として,摩擦・摩耗の過程と特性を理解する.	$\begin{array}{c} 1,\ 2,\ 3,\ 4,\ 5,\ 6,\\ 7 \end{array}$	レポート又は試験	30 %
3	潤滑(境界潤滑,流体潤滑)の原理とトライボロジーの応用としてバイオ トライボロジー等を理解する	7, 8, 9, 10.11	レポート又は試験	25 %
4	トライボロジーの応用としての表面の創成技術について理解する.	12, 13, 14, 15	レポート又は試験	20 %

[授業計画・授業内容]

- 1. 固体の表面とは
- 2. 固体が接触すると何が起こるのか
- 3. きれいな表面は凝着する
- 4. 摩擦現象の本質
- 5. 摩耗現象の本質
- 6. 摩擦・摩耗は雰囲気環境によってどう変わる
- 7. 摩擦・摩耗を抑える技術
- 8. 潤滑はどのように可能なのか
- 9. 境界潤滑と流体潤滑
- 10. Reynolds 方程式と流体潤滑理論
- 11. 人工関節とバイオトライボロジー
- 12. 表面の創製技術; P V D
- 13. 表面の創製技術; C V D
- 14. 固体潤滑と薄膜潤滑
- 15. 摩擦・摩耗・潤滑を使った技術

[教科書・参考書] 未定(講義の時に指示)

[評価方法・基準] レポート提出もしくは試験

T1Q046001

授業科目名: 精密加工学 〔千葉工大開放科目〕

科目英訳名: Precision Machining

担当教員 : 森田 昇

単位数 : 2.0 単位 開講時限等: 3 年後期水曜 3 限 授業コード: T1Q046001 講義室 : 工 17 号棟 112 教室

科目区分

2009年入学生: 専門選択科目 F36(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 90

[受講対象] 科目等履修生 履修可; 電子機械工学科 3 年次生、4 年次生、先進科学プログラム課程および他学科や他学部で受講が認められた者

[授業概要] 研削加工は,切削加工と並び生産技術として重要な精密加工法のひとつである.講義では,研削加工法の原理と実際を体系的に学ぶとともに,精密部品製造への適用の方法論を理解する.また,ラッピング,ホーニング, 超仕上げなどの砥粒加工法について,その原理と応用法を理解する. [目的・目標] 1.研削加工法の原理と特徴について理解できる.2.研削加工の基礎現象とその測定法について理解できる.3.研削加工法の適用論について理解できる.4.砥粒加工法の原理と応用に関する基本的知識が習得できる.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	研削加工法の原理と特徴について理解する.	1,2,3,4	小テスト,中間試験	25 %
2	研削加工の基礎現象とその測定法について理解する.	5 , 6 , 7 , 8	小テスト,中間試験	25 %
3	研削加工法の適用論について理解する.	9,10,11, 12	小テスト , 期末試験	2 5 %
4	砥粒加工法の原理と応用に関する基本的知識を習得する.	13,14,15	小テスト,期末試験	25 %

[授業計画・授業内容]

- 1. 精密加工法の意義,研削加工法の概念,切削加工法との比較
- 2. 研削砥石の構造, 砥粒の種類と性質, 結合材の種類と性質
- 3. 砥粒の切削作用,接触弧の長さと切くず長さ
- 4. 研削抵抗の意義,研削抵抗の寸法効果,研削抵抗の測定法
- 5. 研削温度, 砥粒研削点温度, 研削温度の測定法
- 6. 表面粗さの定義と表示,表面創成機構,表面粗さの測定法
- 7. 研削加工を応用したシリコンウエハの製造技術
- 8. 中間まとめ
- 9. 研削加工面の損傷とその要因,機能への影響と抑制法
- 10. 研削機構と寸法精度の関係,加工変質層の各種測定法
- 11. 砥粒の損耗・摩滅機構と研削条件の影響, 砥石の目なおし
- 12. 砥石摩耗と研削性能,砥石寿命判定と形なおし,研削比
- 13. 研削加工の実際と応用,被削材種と研削条件,研削液
- 14. 砥粒加工の原理と応用(ラッピング,ホーニング,超仕上げ)
- 15. 砥粒加工を応用したハードディスク基板の製造技術
- 16. 期末試験

[キーワード] 精密加工,研削加工,研削砥石,加工変質層,砥粒加工

[教科書・参考書] 加工学基礎(2)「研削加工と砥粒加工」 河村,矢野,樋口,杉田 共著(共立出版)

[評価方法・基準] 評価方法は「目的・目標」に示した表の通りで、評価基準は小テストの合計点40%,中間・期末テストの合計点60%を総合評価して60点以上を合格とする.

[関連科目] 機械加工学,塑性加工学,機械工学実習

[履修要件] 特になし

「備考」 この科目は、機械工学コースの学習目標の内、主に「(D) システムデザイン能力」に関する内容を取り扱う.

T1Q047001

授業科目名:機能材料

〔千葉工大開放科目〕

科目英訳名: Functional Materials

担当教員 : 浅沼 博

単位数 : 2.0 単位 開講時限等: 3 年後期火曜 2 限 授業コード: T1Q047001 講義室 : エ 17 号棟 111 教室

科目区分

2009 年入学生: 専門選択科目 F36 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 80

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要]機械工学分野では材料工学の対象として構造材料を中心に扱うが、本授業では材料機能とは何かという視点から材料全般を概観し、特に機能材料と呼ばれる材料群について詳細に解説する。

[目的・目標] 各種機能材料の材料機能とその発現のメカニズム、それらと用途との関連性について理解し、さらにそれらの新たな応用を見出す力を身につける。

_		科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
	1	各種材料機能とその発現のメカニズムについて説明できるようになる。	全週	試験	45 %
	2	材料機能と用途との関連性について説明できるようになる。	全週	試験	45 %
	3	機能材料の新たな応用を提案することができるようになる。	全週	試験	10 %

[授業計画・授業内容]

- 1. 機能材料概説、機能材料から多機能材料、知的材料への展開
- 2. 機能材料への期待(討論を含む)
- 3. ガラス
- 4. ガラスの応用(光ファイバ等)
- 5. 炭素材料
- 6. 炭素材料の応用(主に炭素繊維関連)
- 7. 形状記憶材料
- 8. 形状記憶材料の応用(討論を含む)
- 9. 水素吸蔵合金
- 10. 圧電材料
- 11. 圧電材料の応用
- 12. 電動ポリマー関連
- 13. 修復機能
- 14. 知的材料
- 15. 材料機能のデモ(討論を含む)
- 16. まとめと試験

[キーワード] 機能材料、多機能材料、知的材料、ガラス、光ファイバ、炭素材料、炭素繊維、形状記憶材料、水素吸蔵 合金、圧電材料、電動ポリマー、修復機能

[教科書・参考書] 教科書:機械材料学(日本材料学会) 参考書:金属材料基礎工学(井形直弘、本橋嘉信、浅沼博著、 日刊工業新聞社)

[評価方法・基準] 試験

[履修要件] 材料科学、鉄鋼材料、非鉄金属材料を理解しておくこと。

T1Q048001

授業科目名: インターンシップ

科目英訳名: Internship

担当教員 : 加藤 秀雄, 三神 史彦

単位数 : 2.0 単位 開講時限等: 3 年通期集中

授業コード: T1Q048001 講義室 :

科日区分

2009年入学生: 専門選択科目 F36(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 演習・実習

[受入人数] 特に制限はないが、「受入れ先」との調整が必要である。

[受講対象] 工学部機械工学科の学生のみ

[授業概要] 学外の企業などにおける体験・研修的な就学体験であり、リクル - ト活動やアルバイト的な体験は不可。時期は3~4年次の夏休み期間中を原則とするが、春休み期間中や通常の授業時間外に実施するのも可。実施期間は2週間、または延べ45時間以上とする。

[目的・目標] 学外の企業などにおける現場体験を基に、職業意識を養成することができる。また、それまでに座学等で学習した内容と現場で必要な知識や能力を比較することにより、今後の勉学に対するモチベーションを高めることができる。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	工学技術を社会のために利用できる。			30 %
2	問題発見能力と問題解決能力の例題を実践する。			20 %
3	座学での論理的な思考力を基に実践的技能を身につける。			40 %
4	工学倫理の実践。			10 %

- [授業計画・授業内容]事前に「企業体験計画書」を担当教員に提出し、終了後は「インターンシップ就業体験日誌」および受入れ先企業の担当者にお願いして「インターンシッピ就業体験評価報告書」をいただき、担当教員に提出するとともにインタビューを受けること。
 - 1. 3~4年次の夏休み期間中を原則とするが、春休み期間中や通常の授業時間外に実施するのも可。
 - 2. 実施期間は2週間、または延べ45時間以上とする。

[キーワード] ものづくり、企業活動、インターンシップ、工場実習、職業意識

[教科書・参考書] 特になし

[評価方法・基準] 「インターンシップ就業体験日誌」および「インターンシッピ就業体験評価報告書」を基に、担当教員による就学度インタビューを総合して評価する。

T1Q049001

授業科目名: 流体力学演習 II

科目英訳名: Exercises in Fluid Mechanics II

担当教員 : 劉 浩

単位数 : 1.0 単位 開講時限等: 3 年前期水曜 1 限隔週 1,3 授業コード: T1Q049001 講義室 : エ 17 号棟 214 教室

科目区分

2009 年入学生: 専門選択必修 F20 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 演習

[受入人数] 100

- [受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可; 機械工学科 3 年生、先進科学プログラム課程および他学科学生で受講が認められた者。
- [授業概要] 流体現象の記述と基礎方程式、理想流体の速度ポテンシャルと流れ関数、粘性流体の層流と乱流の諸特性、 ナビエ・ストークス方程式の解析例、境界層解析の基礎など、流体力学の基礎的事項を体系的に学習する。
- [目的・目標] 自然科学の基礎となる、流体現象の数学的記述や解析および工学的側面について理解する。具体的には典型的な基礎方程式に関していくつかの簡単な解析解を例に取り、物理的な現象の把握を目的としながら、速度ポテンシャルや流れ関数、渦や循環、境界層や摩擦力、層流や乱流、揚力や抗力などの流体力学の基礎的な事項を学習する。

, ,	0			
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	理想流体において:渦度:rot V = 0 (速度ベクトルV) すなわち渦度なしの流れ=ポテンシャル流れをあつかい, 基本的な流れが簡単な関数であらわせること、またそれらの重ね合わせが円柱周りの流れ を表せることも理解できるようになる。(B-3)	1, 2	中間試験,期末試験	20,10 %
2	物体まわりの循環(速度の全周積分)を導入し、円柱一平板間の写像関係により 循環から平板の揚力が決定でき、楕円翼などの揚力特性を表せることが 理解できるようになる。(B-3)	3, 4	中間試験,期末試験	20,10 %
3	ナビエ・ストークス方程式の解析例を通して、流体現象の数学的記述と基礎方程式の解析や物理現象を理解する。(B-3)	5, 6	期末試験	20 %
4	物体まわりの境界層や摩擦力、境界層理論の基礎について理解する。(B-3)	7	期末試験	20 %

- 1. 複素ポテンシアル、速度ポテンシアル、複素速度を応用し円柱周り(ポテンシアル解の重ね合わせ)やかどを回る流れ、回転円柱についてブラジウスの定理などで速度、圧力の表示式を知り具体的計算を理解できるようになる。
- 2. 円柱-平板間の写像関係やクッタの条件について理解し 円柱の複素ポテンシアルの解を平板に応用し、速度、圧力の振る舞いを式で表せるようになる。
- 3. 円柱まわりの流れでの物体に働く力の圧力の寄与を、揚力や抗力の算出ができるようになる。

- 4. ビオサヴァールの法則と楕円翼の揚力特性、抗力係数について理解し、3次元翼に例でそれらを算出ができるようになる。 後半、中間試験
- 5. ナビエ・ストークス方程式の、平行平板間の流れやクェットの流れへの適用と解析を通して、物理的現象を理解できるようになる。
- 6. 円管内の流れ(ポアズイユの流れ)、レイリ の流れ、振動平板間の流れについても、ナビエ・ストークス方程式の解析や演習を通して理解できるようになる。
- 7. 境界層の解析のいくつかの方法、平板境界層や円柱と球まわりの境界層の形成と特質を理解する。粘性摩擦から抵抗や揚力を算出できるようになる。
- 8. 試験

9.

10.

[キーワード] レイノルズ数、層流、乱流、境界層、流れの剥離、抵抗、ポテンシャル流れ、渦度

[教科書・参考書] [教科書] 流体の力学 - 現象とモデル化 (コロナ社。4 セメスタの流体力学 I と同じ) 適宜、プリント配布。

[評価方法・基準] 中間試験 (40 %) 期末試験 (60 %) 合わせて 100 点満点で評価する。単位を取得するためには、総合評点が 60 点以上であること。

[関連科目] 流体力学 I,II、流体力学演習 I

[履修要件] 流体力学 I、流体力学演習 I を履修していることがのぞましい。

T1Q050001

[千葉工大開放科目]

授業科目名: ロボット工学

科目英訳名: Robotics

担当教員 : 並木 明夫

当我员 . 亚尔 奶人

単位数 : 2.0 単位 開講時限等: 4 年前期金曜 4,5 限隔週 1,3

授業コード:T1Q050001, T1Q050002 講義室 : 工 17 号棟 214 教室

科目区分

2008年入学生: 専門選択科目 F36(T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[授業概要] 一般知識としてのロボットの歴史を説明するとともに専門知識としてのロボットの基礎としての運動学を重点的に説明する.また、最先端のロボット技術の現状についてビデオなどで紹介する.

[目的・目標] ロボットの構成法,力学解析,知能化などの基本を習得し,ロボットの基礎と応用の概論的知見を養うことを目的とする.

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	ロボットの機構を理解し,構造を読み取ることができる。	1, 2, 16	期末試験	20 %
2	ロボットの運動学の計算ができる。	3, 4, 5, 6	期末試験	20 %
3	ロボットの動力学の計算ができる。	7, 8, 9	期末試験	20 %
4	ロボットの可操作性の計算ができる。	10, 11	期末試験	20 %
5	ロボットの位置制御系が設計できる。	12, 13, 14	期末試験	20 %

- 1. ロボット研究の概要
- 2. ロボットの機構
- 3. 運動学1
- 4. 運動学2
- 5. 運動学3
- 6. 運動学4
- 7. 動力学 1
- 8. 動力学 2
- 9. 動力学3
- 10. 可操作性 1

- 11. 可操作性 2
- 12. 位置制御 1
- 13. 位置制御 2
- 14. 位置制御3
- 15. 試験
- 16. 先端ロボット研究の現状(見学)

[キーワード] ロボット、運動学、動力学,制御

[教科書・参考書] ロボット制御基礎論, 吉川 恒夫, コロナ社

[評価方法・基準] 試験 [履修要件] 特になし

T1Q051001

授業科目名: 自動車工学

〔千葉工大開放科目〕

科目英訳名: Automotive Engineering

担当教員 : (関山 惠夫)

単位数 : 2.0 単位 開講時限等: 4 年前期火曜 3 限 授業コード: T1Q051001 講義室 : 工 17 号棟 211 教室

科目区分

2008 年入学生: 専門選択科目 F36 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 自動車に関する工学技術の基礎を講義する.自動車に要求される機能を、(1) 動力を発生する(原動機)、(2) 動く(動力性能と動力伝達)、(3) 止まる(制動)、(4) 曲がる(運動性能)、(5) 支える(懸架装置) に分け、各々についての理論と基本構造を知り、工学的な理解と知識を得るように講義する。

[目的・目標]機械工学分野の総合製品の一つである自動車を題材とし,工学の実践的な応用と理解を深めることを目的とし、社会生活上重要な役割を果たしている自動車を構成する個々の技術の工学的理解を目標とする。具体的には,エンジンの性能と構造,車両の動力性能,操縦安定性,制動性能については熱力学や運動力学等の基礎を用いて現象を理解し説明できる事を目標とする。また公報に示されたデータを元に自動車と社会や環境との関係を知る。

	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	自動車と社会の関係の理解:経済、輸送、生活、環境	1	期末試験	5 %
2	自動車用エンジンの工学的理解:熱力学的理解、構造、性能、排気ガス対 策、燃料	2, 3, 4, 5, 6, 7	期末試験	30 %
3	自動車の動力性能と動力伝達装置の構造理解	8, 9, 10	期末試験	25 %
4	制動力学と制動装置の構造の理解	11	期末試験	15 %
5	自動車の運動性能(旋回性能)の理解	12, 13	期末試験	15 %
6	懸架装置の構造と運動性能に与える影響の理解	14, 15	期末試験	10 %

- 1. 自動車と社会の関係および自動車工学の概論:自動車と社会、経済、環境
- 2. 自動車用エンジンと熱サイクルの基礎 (1): 熱力学第一法則と第二法則の復習
- 3. 自動車用エンジンと熱サイクルの基礎(2): 各種サイクルと熱効率
- 4. 自動車用エンジンの性能基礎と構造(1): ガソリンエンジンとディ-ゼルエンジンの違い、仕事率および軸出力
- 5. 自動車用エンジンの性能基礎と構造(2): エンジンの性能に影響を及ぼす因子の例
- 6. 自動車用エンジンの性能基礎と構造(3): 後処理装置、過給機の基礎と EGR
- 7. 自動車用エンジンの構造と燃料および新燃焼方式:エンジンの運動部品と運動力学、燃料、新燃焼方式
- 8. 自動車の動力性能と基本的設計の要件:自動車の運動と動力性能、発進装置
- 9. 動力伝達機構の解説と基本的設計要件 (1): 変速機の構造と働き、補助変速装置
- 10. 動力伝達機構の解説と基本的設計要件(1): 推進軸と作動装置および終減速機
- 11. 制動性能:制動力学と制動機構
- 12. 運動性能 (タイヤ外力と自動車の運動力学-1): タイヤ座標系と 6分力
- 13. 運動性能 (タイヤ外力と自動車の運動力学-2): 自動車の座標系と運動方程式および運動性能 (旋回性能)

- 14. 懸架装置 (サスペンション): バネの力学基礎、懸架装置の構造, 懸架装置の構造が運動性能に与える影響
- 15. 期末試験 (7月12日)

[キーワード] 自動車,エンジン,動力伝達機構,動力性能、運動力学,制動、懸架装置

[教科書・参考書] 各単元ごとに印刷した資料、テキストを各講義の前に配布する。

[評価方法・基準] 期末試験の結果(60点以上)による。試験は90分間に小問(100問)を ×式で問う。出題数の項目 別割合は目的・目標欄内の「科目の成績評価全体に対する重み」欄に示した割合にほぼ沿って出題する。

[関連科目] 熱力学、力学

[備考] 講義への出席率は80%以上を単位取得の前提条件とする。

T1Q052001

授業科目名: 宇宙工学

[千葉工大開放科目]

科目英訳名: Space Engineering

担当教員 : (石井 信明)

単位数: 2.0 単位開講時限等: 4 年前期火曜 2 限授業コード: T1Q052001講義室: エ 17 号棟 111 教室

科目区分

2008 年入学生: 専門選択科目 F36 (T1KD:機械工学科 (先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受入人数] 80

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

- [授業概要] 講議全体を主として3つのトピックに分け、これまでの宇宙開発の歴史と成果、ロケット開発に必要な技術、 衛星開発に必要な技術に関して、実際のプロジェクトを例に計画立案から必要な要素技術の開発について概要を述 べる。
- [目的・目標] 宇宙開発に関連する工学技術を理解してもらうために、宇宙輸送系(ロケット他)および衛星システムなど宇宙工学全般に関する話題を紹介する。大学で学ぶ基礎的な知識や専門的な学問が実際のプロジェクトの中でどのように応用されているかを知ってもらう。
- [授業計画・授業内容] まず初めに、日本および世界におけるこれまでの宇宙開発の経緯を振り返り、宇宙開発の意義および必要性と過去の成果について述べる。次に、飛翔体関連技術として、ロケットの仕組み、構成、推進原理、誘導と制御等について説明する。衛星関連技術として、衛星の種類、要求されている機能と構成、姿勢検出装置、姿勢・軌道制御装置等について説明する。地球周回衛星と惑星探査機について、軌道の違い、軌道移行方式、惑星重力を利用した軌道変更(スウィングバイ技術)等を説明し、打上げからミッション達成までのシーケンスを実際の惑星探査計画を例に紹介する。
 - 1. 宇宙開発の歴史と成果
 - 2. 日本における宇宙開発の現状
 - 3. 宇宙開発の意義と必要性
 - 4. ロケットの構造と推進原理
 - 5. ロケットの誘導制御
 - 6. 将来の輸送系技術
 - 7. ロケット開発に必要な技術と検証方法
 - 8. 人工衛星の機能
 - 9. 地球周回衛星と惑星探査機
 - 10. 人工衛星の軌道
 - 11. スウィングバイ技術
 - 12. 軌道計画とミッション解析
 - 13. 開発コストと信頼性の確保
 - 14. 地上試験と打上げオペレーション
 - 15. 地上追跡と軌道上運用

[キーワード] 宇宙開発、ロケット、飛翔体、人工衛星、惑星探査機、スウィングバイ技術

[評価方法・基準] レポート

Γ1Q053001

授業科目名: 燃焼学

[千葉工大開放科目]

科目英訳名: Combustion Theory

担当教員 : (佐藤 研二)

単位数 : 2.0 単位 開講時限等: 4 年前期木曜 4,5 限隔週 1,3 授業コード: T1Q053001, T1Q053002 講義室 : エ 17 号棟 211 教室

科目区分

2008 年入学生: 専門選択科目 F36 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 講義

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 燃焼現象について、基礎的な知識をつけ、もって、実用燃焼器の設計や性能改善を可能とするような資質を得られるように講義を行う.

[目的・目標] 化学エネルギーを熱エネルギーに変換する過程である燃焼現象について、基礎的な知識をつけ、もって、 実用燃焼器の設計や性能改善を可能とするような資質を得ることを目的とする。燃焼の基礎的事項である化学反応 機構や化学種・熱の輸送過程、流れなどについて学習し、熱理論や火炎面理論などの燃焼基礎論を理解する。

[授業計画・授業内容]

- 1. イントロダクション
- 2. 化学反応機構と連鎖爆発理論
- 3. 熱伝達と熱爆発理論 熱伝達及び爆発と化学反応の関係について解説する.
- 4. 燃焼基礎式、発熱量、理論混合気、理論空気量、当量比 燃焼の基礎となる方程式 , 用語について解説する .
- 5. 化学平衡計算と断熱火炎温度
- 6. 火炎の種類(予混合火炎と拡散火炎、デトネーションとデフラグレーション)
- 7. 予混合火炎の性質(1)
- 8. 予混合火炎の性質(2)
- 9. 拡散火炎の性質(1)
- 10. 拡散火炎の性質(2)
- 11. 内燃機関における燃焼
- 12. 工業炉における燃焼
- 13. 燃焼排気物
- 14. 燃焼における計測
- 15. 試験

[キーワード] 燃焼,反応,火炎

[教科書・参考書] 別途掲示

[評価方法・基準] 試験とレポートによる

T1Q054001

授業科目名: 卒業研究

科目英訳名: Graduate Research

担当教員 : 各教員

単位数 : 6.0 単位 開講時限等: 4 年通期集中

授業コード: T1Q054001 講義室

科目区分

2008 年入学生: 専門必修 F10 (T1KD:機械工学科(先進科学), T1Q:機械工学科)

[授業の方法] 演習・実験

[受講対象]機械工学科4年次(先進科学を含む)および電子機械工学科(機械系コース)4年次

[授業概要] 各研究室で,実験,輪講,ゼミを通して研究の方法を学ぶ.研究結果を卒業論文としてまとめ,プレゼン テーションを行う. [目的・目標] 研究に関する基礎的方法を修得ことができる.現代の先端的研究の一端に触れることができる.研究成果を論文としてまとめることができるようになる.研究成果を他の人にわかりやすく説明することができるようになる.

6 O	•			
	科目の達成目標	関連する授業週	達成度評価方法	科目の成績評価全 体に対する重み
1	卒業研究のテーマに関連して,その研究が必要となった社会的技術的背景, 主要な技術的問題点,解決策のポイント,得られた成果とその波及効果,残 された問題点などを要領よく記述した卒業論文を作成することができる。			%
2	卒業研究のタイトルおよび主要な内容を , 3 0 0 語程度の英文で表現できる。			%
3	卒業論文の重要なポイントを,パワーポイント等を使用してわかりやすく 口頭発表することができる。			%
4	卒業研究のテーマに関連して,研究の遂行状況を随時評価し,次にするべき作業や検討について計画し,実行することができる。			%
5	卒業研究のテーマに関連して,自分の実施した検討や作業の内容や今後行 おうとする検討や作業の内容について,指導教員,研究室の他のメンバー が理解できるように説明できる。			%
6	卒業研究のテーマに関連して,自分の実施した検討や作業の内容や今後実施しようとする検討や作業の内容をわかりやすくまとめた技術文書や企画書を作成できる。			%
7	卒業研究のテーマに関連して,実施した検討や作業の内容または今後実施 しようとする検討や作業の内容に関して,複数の方式,方法を評価してよ り良い方法がどれであるかを論理的に説明できる。			%
8	8.卒業研究のテーマに関連した内容について,日本語および英語の文献を読解し,内容の概略をつかみ,それを作業や検討の立案に反映できる。9.多面的な視点から技術のあり方について考えることができ,技術的な判断が必要な場面における技術者のとるべき態度について考察することができる。10.卒業研究への取り組みを通して,専門分野における知識・能力としてこれまで身に付けてきたことを的確に把握するとともに,今後の進路に照らして取り組みが必要な課題を認識できる。			%

[授業計画・授業内容] 内容(研究題目)は学生ごとに,または数名のグループごとに異なる.研究題目は各研究室(教育研究分野)から年度始めに公表され,卒業研究説明会にて概要が説明される.その後,希望調査等を経て,各研究室への配属が決定される.さらに詳細な研究目的・方法・計画は配属された研究室において行われる.研究成果は卒業論文としてとりまとめ,さらに機械工学科卒業研究発表会で発表しなければならない.

[評価だ	5 法・基準 $]egin{array}{c} A)$ 「卒業論文」評価 $[20$ 点満点 $]$ 1 . 題名と概要(日本語および英語)は、適切に書かれているか
	機 E-3) 2. 構成(章立て、引用など)は、整理されて適切なものか(機 E-2) 3. 研究が必要となった社
=	会的技術的背景位置付け、問題点などを適切に記述しているか(機 ${ m C-2,E-1,E-2}$) $_{oldsymbol{2}}$ 4. 卒業論文として、成果や
2	別達点を明確に記述しているか(機 B-4,C-2,E-2)B) 「卒研発表」評価 [30 点満点]1. 「卒研概要(予
	高と称する場合もある)」は、要点を絞って適切に書けているか(機 $\mathrm{E} ext{-}2$) $___$ 2. 卒研の内容を、わかりやすく適
1	切に口頭発表できたか(機 B-2,E-2) $_{oldsymbol{L}=2}$ 3.実施した研究の位置付けや意味を正しく理解しているか(機
]	$\mathbb{E}\text{-}1, ext{F-}3$) $_{fracktriangle}4$.実施した手法の選択や実施過程は適切かつ理解できるものか(機 $ ext{C-}2, ext{E-}1, ext{E-}2, ext{F-}2$) $_{fracktriangle}5$.質疑
J	$oxdot$ 答で、質問を理解し、適切な回答をすることができたか(機 $\mathrm{C-2,E-2}$) $___$ 6 . 卒研を通して、専門分野におい
-	C 身に着けた自己の知識・能力を把握できているか(機 $\mathrm{C} ext{-}2,\mathrm{F} ext{-}3$) $___$ C)「卒業研究」の評価 $[50$ 点満点 $]$ (「卒業
7	开究ノート」および「キャリア形成レポート」も参照する。) 1. 卒研のテーマに関連して、日本語および英語
(D文献を読解し、それを作業や検討の立案に反映できたか(機 $\mathrm{E} ext{-}1$) $_{}2$. 実施した検討や作業の内容、および
•	今後の検討や作業の計画を、随時わかりやすく説明したり文章にすることができたか、また計画は広い視野で十分
[今味されていたか(機 $\mathrm{B ext{-}4,C ext{-}2,E ext{-}2,F ext{-}2}$) $_{oxdot{2}}$ 3.卒研の実施にあたって、課題への取り組みに必要な自発性や積極
1	生、創意工夫、が見られたか(機 $\mathrm{B} ext{-}4,\mathrm{C} ext{-}2,\mathrm{E} ext{-}1,\mathrm{F} ext{-}2,\mathrm{F} ext{-}3}$) $_{oldsymbol{}}4$.卒研のテーマに関連して、研究が必要となった社
5	会的技術的背景、主要な技術的問題点、解決策のポイント、得られた成果とその波及効果、残された問題点などを
3	里解し、適切に記述した卒業論文を作成することができたか(機 B - $3,E$ - $1,E$ - $2,E$ - 3) $_{oldsymbol{2}}$ $_{oldsymbol{5}}$. 卒研を実施するにあ
	とって、これまで身につけた専門分野の知識・能力を、自分自身で把握し、その知識等を意欲的に高める努力がで
	きたか、また今後の進路に照らして必要な課題が認識できたか(機 $ ext{A-2,F-1,F-3}$) $___6$. 基本的および多面的な視
ļ	5.00 気術のあり方、技術者がとるべき態度について、判断あるいは考察することができたか(機 1.00
_	(A)B)C) いずれについても $60%$ 未満の点数がある場合は不可となる。 修学ポートフォリオを提出しない場
1	合は、卒業論文を受理しない。

[関連科目] すべての科目

[履修要件] 入学年度の「履修課程」に記載

[備考] この科目は,学習教育目標の「(A) 技術者倫理に基づく責任」に関する具体的な達成内容 (A-2),「(B) 事象の本質的理解と専門知識の応用」に関する具体的な達成内容 (B-2) と (B-4),「(C) 論理的な思考力」に関する具体的な達成内容 (C-2),「(E) 自己表現」に関する具体的な達成内容 (E-1) ~ (E-3),「(F) 柔軟な思考力と計画的アプローチ」に関する具体的な達成内容 (F-1) ~ (F-3) を取り扱う.

T1Q055001

授業科目名: エネルギー論

科目英訳名: Energy and Environment

担当教員 : 前野 一夫

単位数: 2.0 単位開講時限等: 4 年前期水曜 4 限授業コード: T1Q055001講義室: 工 17 号棟 112 教室

科目区分

2008 年入学生: 専門選択科目 F36 (T1KD:機械工学科 (先進科学) , T1Q:機械工学科)

[目的・目標] エネルギーに関する工学的な基礎事項と、その都市環境における諸問題について理解を深めることが、この講議の目的である。まず、エネルギーと環境の問題についての展望を示し、流体と熱の流れに関する基礎と応用について考察する。

[授業計画・授業内容] 1. エネルギーとは? 2. 流れと流体、静止した流体の諸特性 3. 流体の流れを支配する基礎法則 4. 管の中の流れと管路システム 5. 川の流れ、地下水の流れ、水波 6. 地球大気の動き、気象 7. 流れから受ける力、抗力と揚力、推進力 8. 熱の流れを支配する基礎法則 9. 固体内の熱の流れ - 熱伝導 10. 固体壁と流体間の熱の流れ - 熱伝達 11. 流体の移動に伴う熱の流れ - 自然対流 12. 流体の移動に伴う熱の流れ - 強制対流 13. 電磁波による伝熱 - 熱放射 *途中試験を行う

[評価方法・基準]

T1Y016001

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.)

担当教員 : 植田 憲 単位数 : 2.0 単位 開講時限等: 1 年前期火曜 5 限 授業コード: T1Y016001 講義室 : エ 2 号棟 201 教室

科目区分

2011 年入学生: 専門基礎必修 E10 (T1KC:建築学科 (先進科学) , T1KE:デザイン学科 (先進科学) , T1N:建築学科 , T1P:デザイン学科) , 専門基礎選択必修 E20 (T1E:都市環境システム学科 , T1E3:都市環境システム学科 (社会人枠) , T1L:メディカルシステム工学科 , T1T:画像科学科 , T1U:情報画像学科) , 専門基礎選択 E30 (T1KD:機械工学科 (先進科学) , T1KF:ナノサイエンス学科 (先進科学) , T1Q:機械工学科 , T1S:ナノサイエンス学科) , 専門選択科目 F36 (T1M:共生応用化学科 , T1M1:共生応用化学科生体関連コース , T1M2:共生応用化学科応用化学コース , T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[授業概要] 「工学」とは「ものづくり」であり、「ものづくり」とは「造形」である。「造形演習」は、いくつかの「造形」に関する課題を通して、「工学=ものづくり」に対する関心を鼓舞し、学生のひとりひとりが有する造形の 資質を覚醒する。

[目的・目標] 本演習の具体的な目的は、以下のようである。(1)「学び取る」姿勢を培う。(2)多面的な観察能力を養う。(3)多様な解の存在を認識する。(4)プレゼンテーション能力を涵養する。「造形演習」の4つの課題のひとつひとつには、限られた時間のなかで精一杯にチャレンジし、満足するまで成し遂げることが求められている。頭脳と手とを連動させ、「手を動かし、汗をかき、想いをめぐらし、創る」まさに「手汗想創」を体感する。

- 1. 全体ガイダンスおよびクラス分け
- 2. 第1課題:「鉛筆による精密描写」
- 3. 第1課題の演習
- 4. 第1課題の講評
- 5. 第2課題:「展開図に基づいた立体物の描写」
- 6. 第2課題の演習
- 7. 第2課題の講評
- 8. 中間発表会
- 9. 第3課題:「卓上ランプシェードの制作」
- 10. 第3課題の演習

- 11. 第3課題の講評
- 12. 第4課題:「飛行体の造形」
- 13. 第4課題の演習
- 14. 第4課題の講評
- 15. 展示会、まとめ、全体講評

[キーワード] 観察・思索,デザイン,手汗想創,プレゼンテーション

[教科書・参考書] 特にありません。

[評価方法・基準] 成績評価は、出席状況、作品・プレゼンテーションの状況に基づいて行います。

[関連科目] 特にありません。

「履修要件」特にありません。

[備考] 特にありません。

T1Y016002

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.)

担当教員 : 田内 隆利

単位数: 2.0 単位開講時限等: 1 年前期火曜 5 限授業コード: T1Y016002講義室: 創造工学センター

科目区分

2011 年入学生: 専門基礎必修 E10 (T1KC:建築学科(先進科学), T1KE:デザイン学科(先進科学), T1N:建築学科, T1P:デザイン学科), 専門基礎選択必修 E20 (T1E:都市環境システム学科, T1E3:都市環境システム学科(社会人枠), T1L:メディカルシステム工学科, T1T:画像科学科, T1U:情報画像学科), 専門基礎選択 E30 (T1KD:機械工学科(先進科学), T1KF:ナノサイエンス学科(先進科学), T1Q:機械工学科, T1S:ナノサイエンス学科), 専門選択科目 F36 (T1M:共生応用化学科, T1M1:共生応用化学科生体関連コース, T1M2:共生応用化学科応用化学科応用化学コース, T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

- 1. 全体ガイダンスおよびクラス分け
- 2. 第1課題:「鉛筆による手の描写」
- 3. 第1課題の演習
- 4. 第1課題の演習・講評
- 5. 第2課題:「三面図に基づいた立体物の描写」
- 6. 第2課題の演習・講評
- 7. 第3課題:「輪ゴム動力車の制作」
- 8. 第3課題の演習:調査結果に基づく制作物のプレゼンテーション
- 9. 第3課題の演習:制作
- 10. 第3課題の発表
- 11. 第4課題:「紙サンダルの制作
- 12. 第4課題の演習:調査結果に基づく制作物のプレゼンテーション
- 13. 第4課題の演習:制作
- 14. 第4課題の発表
- 15. 展示会及び講評

[評価方法・基準] 出席状況、制作物やプレゼンテーションのクオリティを総合的にみて評価する [備考] 創造工学センターはサンダルやヒールの高い靴厳禁。

T1Y016003

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.) 担当教員 : 玉垣 庸一, 下村 義弘

単位数 : 2.0 単位 開講時限等: 1 年前期火曜 5 限 授業コード: T1Y016003 講義室 : エ 2-アトリエ (2-601)

科目区分

2011 年入学生: 専門基礎必修 E10 (T1KC:建築学科 (先進科学) , T1KE:デザイン学科 (先進科学) , T1N:建築学科 , T1P:デザイン学科) , 専門基礎選択必修 E20 (T1E:都市環境システム学科 , T1E3:都市環境システム学科 (社会人枠) , T1L:メディカルシステム工学科 , T1T:画像科学科 , T1U:情報画像学科) , 専門基礎選択 E30 (T1KD:機械工学科 (先進科学) , T1KF:ナノサイエンス学科 (先進科学) , T1Q:機械工学科 , T1S:ナノサイエンス学科) , 専門選択科目 F36 (T1M:共生応用化学科 , T1M1:共生応用化学科生体関連コース , T1M2:共生応用化学科応用化学コース , T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

[評価方法・基準]

T1Y016004

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.)

担当教員 : 福川 裕一

単位数: 2.0 単位開講時限等: 1 年前期火曜 5 限授業コード: T1Y016004講義室: エ 15 号棟 110 教室

科目区分

2011 年入学生: 専門基礎必修 E10 (T1KC:建築学科(先進科学), T1KE:デザイン学科(先進科学), T1N:建築学科, T1P:デザイン学科), 専門基礎選択必修 E20 (T1E:都市環境システム学科, T1E3:都市環境システム学科(社会人枠), T1L:メディカルシステム工学科, T1T:画像科学科, T1U:情報画像学科), 専門基礎選択 E30 (T1KD:機械工学科(先進科学), T1KF:ナノサイエンス学科(先進科学), T1Q:機械工学科, T1S:ナノサイエンス学科), 専門選択科目 F36 (T1M:共生応用化学科, T1M1:共生応用化学科生体関連コース, T1M2:共生応用化学科応用化学科応用化学コース, T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

[評価方法・基準]

T1Y016005

授業科目名: 造形演習

科目英訳名: Design Aesthetics(Lab.) 担当教員: UEDA EDILSON SHINDI

単位数: 2.0 単位開講時限等: 1 年前期火曜 5 限授業コード: T1Y016005講義室: 工 2 号棟 102 教室

科目区分

2011 年入学生: 専門基礎必修 E10 (T1KC:建築学科 (先進科学) , T1KE:デザイン学科 (先進科学) , T1N:建築学科 , T1P:デザイン学科) , 専門基礎選択必修 E20 (T1E:都市環境システム学科 , T1E3:都市環境システム学科 , T1E3:都市環境システム学科 (社会人枠) , T1L:メディカルシステム工学科 , T1T:画像科学科 , T1U:情報画像学科) , 専門基礎選択 E30 (T1KD:機械工学科 (先進科学) , T1KF:ナノサイエンス学科 (先進科学) , T1Q:機械工学科 , T1S:ナノサイエンス学科) , 専門選択科目 F36 (T1M:共生応用化学科 , T1M1:共生応用化学科生体関連コース , T1M2:共生応用化学科応用化学コース , T1M3:共生応用化学科環境調和コース)

[授業の方法] 演習

[受入人数] 60

[受講対象] 自学部他学科生 履修可, 他学部生 履修可, 科目等履修生 履修可

[授業概要] 「工学」とは「ものづくり」であり、「ものづくり」とは「造形」である。「造形演習」は、いくつかの「造形」に関する課題を通して、「工学=ものづくり」に対する関心を鼓舞し、学生のひとりひとりが有する造形の資質を覚醒する。

[目的・目標] 工学的手段による問題意識の結果が形となって現われる場合、よいまとまりを意識して形造りを行うか、 意識せずに形造りを行うかでは結果に大きな開きが生じる。よいまとまりを示す形とは何かを演習を通じて修得す る。具体的には、演習計画に示す各項目を各担当教員の専門領域の立場から課題を設定し、演習を行う。

[授業計画・授業内容]

- 1. 全体ガイダンスおよびクラス分け
- 2. 第1課題:「鉛筆による精密描写」
- 3. 第1課題の演習
- 4. 第1課題の講評
- 5. 第2課題:「展開図に基づいた立体物の描写」
- 6. 第2課題の演習
- 7. 第2課題の講評
- 8. 中間発表会
- 9. 第3課題:「水」「火」「土」「風」のテーマから一つを選び、自由に形を創ろう
- 10. 第3課題の演習
- 11. 第3課題の講評
- 12. 第4課題:「太陽電池の新しい取り入れ方」
- 13. 第4課題の演習
- 14. 第4課題の講評
- 15. 展示会

[キーワード] 観察・思索,デザイン,手汗想創,プレゼンテーション

[教科書・参考書] 特にありません。

[評価方法・基準] 成績評価は、出席状況、作品・プレゼンテーションの状況に基づいて行います。出席:40% 作品・プレゼンテーション:60%

[関連科目] 特にありません。

[履修要件] 特にありません。

[備考] 特にありません。